• Title/Summary/Keyword: 3D Ultrasonic

Search Result 310, Processing Time 0.027 seconds

Efficiency Estimation of Ultrasonic Sensor Fabricated with Porous Piezoelectric Resonator by Experiment of 3-D Underwater Object Recotion (3차원 수중 물체인식 실험에 의한 다공질 압전 초음파 센서의 성능평가)

  • 조현철;이수호;박정학;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.321-324
    • /
    • 1997
  • In this study, Efficiency estimation of ultrasonic sensor fabricated with porous piezoelectric resonator by experiment of 3-D underwater object recognition are presented. The sensor was satisfied with requirement of ultrasonic sensor. The recognition rates for the fixed objects and the translation-rotation objects are 95.3 and 92.7[%], respectively using porous piezoelectric ultrasonic sensor and SOFM neural network. According to the experimental results, It is believed that the self-made ultrasonic sensor can be applied as underwater ultrasonic sensor.

  • PDF

3-D Underwater Object Recognition Using Ultrasonic Sensor fabricated with 3-3 Type Piezoelectric Composites (3-3형 복합압전체 초음파 센서를 이용한 3차원 수중 물체인식)

  • Cho, Hyun-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1682-1684
    • /
    • 2000
  • In this study, 3-D underwater object recognition using ultrasonic sensor fabricated with porous PZT-polymer 3-3 composites and SCL neural networks are presented. The recognition rates for the training data and the testing dara were 100 and 94.6% respectively.

  • PDF

Bandwidth Enhancement of a Broadband Ultrasonic Mosaic Transducer using 48 Tonpilz Transducer Elements with 12 Resonance Frequencies (12 주파수의 48 tonpilz 진동소자를 이용한 광대역 초음파 모자이크 변환기의 대역폭 확장)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.3
    • /
    • pp.302-312
    • /
    • 2014
  • This article describes the design and performance characteristics of a broadband ultrasonic mosaic transducer. We focus on the improved bandwidth in the high frequency band of a previously designed broadband ultrasonic transducer (Lee et al., 2014). The improvement in the pulse-echo bandwidth was achieved by employing twelve $2{\times}2$ element subarrays, operating at different resonance frequencies, and utilizing the mosaic array concept. We found that the -6 dB and -12 dB bandwidths of the newly developed broadband ultrasonic mosaic transducer, were up to 155% and 170% of the previously designed model, with a quality factor of 1.71 and 1.25, respectively. The averaged TVR (transmitting voltage response), SRT (receiving sensitivity), and FOM (figure of merit) values in a nearly flat transmitting response band, from 45 to 105 kHz providing a -12 dB bandwith of 60 kHz, were 163.3 dB (re $1{\mu}Pa/V$ at 1 m), -192.8 dB (re $1V/{\mu}Pa$), and -30.9 dB, respectively.

Development of Ultrasonic Wave Propagation Imaging System

  • Chia, Chen-Ciang;Lee, Jung-Ryul;Kim, Jong-Heon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.283-292
    • /
    • 2009
  • Laser-based ultrasonic sensing requires the probe with fixed fecal length, but this requirement is not essential in laser-based ultrasonic generation. Based on this fact, we designed a pulsed laser-based ultrasonic wave propagation imaging (UWPI) system with a tilting mirror system for rapid scanning of target, and an in-line band-pass filtering capable of ultrasoaic mode selection. 1D-temporal averaging, 2D-spatial averaging, and 3D-data structure building algorithms were developed far clearer results allowing fur higher damage detectability. The imaging results on a flat stainless steel plate were presented in movie and snapshot formats which showed the propagation of ultrasound visible as a concentric wavefield emerging from the location of an ultrasonic sensor. A hole in the plate with a diameter of 1 mm was indicated by the scattering wavefields. The results showed that this robust UWPI system is independent of focal length and reference data requirements.

3-D Underwater Object Recognition Using Ultrasonic Transducer Fabricated with Porous Piezoelectric Resonator (다공질 압전 초음파 트랜스튜서를 이용한 3차원 수중 물체인식)

  • 조현철;이수호;박정학;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.316-319
    • /
    • 1996
  • In this study, characteristics of ultrasonic transducer fabricated with porous piezoelectric resonator are investigated, 3-D underwater object recognition using the self-made ultrasonic transducer and SOFM(Self-Organizing Feature Map) neural network are presented. The self-made transducer was satisfied the required condition of ultrasonic transducer in water, and the recognition rates for the training data and the testing data were 100 and 95.3% respectively. The experimental results have shown that the ultrasonic transducer fabricated with porous piezoelectric resonator could be applied for sonar system.

  • PDF

A Study on a 3D Free-Hand using Ultrasonic Position System

  • Shin Low-Kok;Park Soo-Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.451-454
    • /
    • 2006
  • Ultrasonic Positioning System (UPS) is an absolute positioning system using ultrasonic waves and has better performance in low price than the other absolute positioning systems. UPS can be further used as pseudo-satellites in the place where GPS is not available. This study aims to evaluate the efficiency and effectiveness of using UPS as a 3D free-hand writing or drawing tool. The process includes the design and testing of VPS as an efficient 3D free-hand writing or drawing tool in the air. The paper will further explain the system architecture of the UPS and how to use GPS as 3D free-hand writing or drawing tool. The efficiency and effectiveness of the system was confirmed by a computer software simulation. The software will further display the result of drawing or writing from the user by graphics. As a result, it is possible to implement UPS as a 3D free-hand writing or drawing tool in the air.

  • PDF

Demonstration of an ultrasonic imaging system for molten lead

  • Jonathan Hawes;Jordan Knapp;Robert Burrows;Robert Montague;Paul Wilcox;Hual-Te Chien;Jeff Arndt;Steve Walters
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1460-1471
    • /
    • 2024
  • 2D and 3D ultrasonic imaging has so far not been demonstrated in pure molten lead in the open literature. In this study the development of such an ultrasonic device for imaging is outlined and results from testing at 380 ℃ in lead are presented. The main difficulties were found to be achieving then maintaining suitable wetting while ensuring suitable durability of the device, both due to the harsh nature of molten lead and the elevated temperatures. The successful detection and imaging (2D and 3D), of differently shaped targets, where the features were above the size of the transmitted ultrasound beam was demonstrated.

Measurement of Ultrasonic Field Propagation Characteristics in Biological Tissues Using a Two-dimensional Array Hydrophone (2차원 배열 수중청음기를 이용한 생체조직에서의 초음파 음장 전파특성 측정)

  • ;;;;Xiu-Fen Gong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.76-82
    • /
    • 2001
  • Because the biological tissue with inhomogeneous acoustic properties does not keep a particular shape, the measurement of propagation characteristics of ultrasonic fields by the conventional scanning method with a miniature hydrophone is difficult. In this study, a two-dimensional may hydrophone was fabricated using the PVDF (Polyvinylidene fluoride) piezo-electric film and a ultrasonic field measurement system with it was established. For the acoustic field produced by a circular plan transducer with center frequency of 2.25㎒ and 13㎜ in diameter, it was possible to make a fairly accurate field measurement using the hydrophone system. The attenuation coefficients at 2.25 ㎒ for biological tissues were 0.7∼1.3 dB/cm(average; 1.0 dB/cm) in bovine liver, 1.0∼1.8 dB/cm (average; 1.6 dB/cm) in pig liver, 0.9∼2,9 dB/cm(average: 2.1 dB/cm) in bovine muscles, 1.7∼3.3 dB/cm (average; 2.5 dB/cm) in pig muscles.

  • PDF

3-D Underwater Object Restoration Using Ultrasonic Transducer Fabricated with 1-3 Type Piezoceramic/Polymer Composite and Neural Networks (1-3형 복합압전체로 제작한 초음파 트랜스듀서와 신경회로망을 이용한 3차원 수중 물체복원)

  • Jo, Hyeon-Cheol;Lee, Gi-Seong;Choe, Heon-Il;Sa, Gong-Geon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.456-461
    • /
    • 1999
  • In this study, the characteristics of Ultrasonic Transducer fabricated with PZT-Polymer 1-3 type piezoelectric ceramic/polymer composite are investigated. 3-D underwater object restoration using the self-made ultrasonic transducer and modified SCL(Simple Competitive Learning) neural network was presented. The ultrasonic transducer was satisfied with the required condition of commerical ultrasonic transducer in underwater. The modified SCL neural network using the acquired object data $16\times16$ low resolution image was used for object restoration of $32\times32$ high resolution image. The experimental results have shown that the ultrasonic transducer fabricated with PZT-Polymer 1-3 type piezoelectric ceramic/polymer composite could be applied for SONAR system.

  • PDF