• Title/Summary/Keyword: 3D Thermal Elasto-Plastic analysis

Search Result 14, Processing Time 0.021 seconds

The Thermal Elasto-plastic Analysis Using Layered Shell Element (적층 쉘 요소를 이용한 용접 열탄소성 해석)

  • Song, H.C.;Yum, J.S.;Jang, C.D.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.220-224
    • /
    • 2005
  • The thermal elasto-plastic analysis for the prediction of welding distortion of a 3 dimensional large-scaled ship structure is a very time-consuming work since the analysis is a nonlinear problem, and a lot of finite elements are needed to simulate the large ship hull block. Generally, 3-D finite elements have been used in the 3-D welding distortion problem to assess precisely the temperature gradient through the thickness direction of the welding plate. As a result of the adoption of 3-D element, degrees of freedom are rapidly increased in the problem to be solved. In this study, to improve the time efficiency of welding thermal elasto-plastic analysis, a layered shell element was proposed to simulate 3-D temperature gradient, and the results were compared with the experiment. The experiments were carried out for the type of bead-on-plate welding, and we found the measured data have a good agreement with the FEA results.

  • PDF

A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel PART I : Proposal of a heat source model

  • Kim, Jae Woong;Jang, Beom Seon;Kim, Yong Tai;Chun, Kwang San
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.348-363
    • /
    • 2013
  • The use of I-Core sandwich panel has increased in cruise ship deck structure since it can provide similar bending strength with conventional stiffened plate while keeping lighter weight and lower web height. However, due to its thin plate thickness, i.e. about 4~6 mm at most, it is assembled by high power $CO_2$ laser welding to minimize the welding deformation. This research proposes a volumetric heat source model for T-joint of the I-Core sandwich panel and a method to use shell element model for a thermal elasto-plastic analysis to predict welding deformation. This paper, Part I, focuses on the heat source model. A circular cone type heat source model is newly suggested in heat transfer analysis to realize similar melting zone with that observed in experiment. An additional suggestion is made to consider negative defocus, which is commonly applied in T-joint laser welding since it can provide deeper penetration than zero defocus. The proposed heat source is also verified through 3D thermal elasto-plastic analysis to compare welding deformation with experimental results. A parametric study for different welding speeds, defocus values, and welding powers is performed to investigate the effect on the melting zone and welding deformation. In Part II, focuses on the proposed method to employ shell element model to predict welding deformation in thermal elasto-plastic analysis instead of solid element model.

A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel Part II : Proposal of a method to use shell element model

  • Kim, Jae Woong;Jang, Beom Seon;Kang, Sung Wook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.245-256
    • /
    • 2014
  • I-core sandwich panel that has been used more widely is assembled using high power $CO_2$ laser welding. Kim et al. (2013) proposed a circular cone type heat source model for the T-joint laser welding between face plate and core. It can cover the negative defocus which is commonly adopted in T-joint laser welding to provide deeper penetration. In part I, a volumetric heat source model is proposed and it is verified thorough a comparison of melting zone on the cross section with experiment results. The proposed model can be used for heat transfer analysis and thermal elasto-plastic analysis to predict welding deformation that occurs during laser welding. In terms of computational time, since the thermal elasto-plastic analysis using 3D solid elements is quite time consuming, shell element model with multi-layers have been employed instead. However, the conventional layered approach is not appropriate for the application of heat load at T-Joint. This paper, Part II, suggests a new method to arrange different number of layers for face plate and core in order to impose heat load only to the face plate.

Three Dimensional Finite Element Analysis of Particle Reinforced Metal Matirx Composites Considering the Thermal Residual Stress and the Non-uniform Distribution of Reinforcements (금속복합재료의 열잔류 응력과 강화재의 불규칙 분산 상태를 고려한 3차원 유한 요소 해석)

  • 강충길;오진건
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.199-209
    • /
    • 2000
  • Particles reinforced MMCs have higher specific modulus, higher specific strength, better properties at elevated temperatures and better wear resistance than monolithic metals. But the coefficient of thermal expansion(CTE) of Al6061 is 5 times larger than that of SiCp. The discrepancy of CTE makes some residual stresses inside of MMCs. This work investigates Si$C_p$/Al6061 composites at high temperatures in the microscopic view by three-dimensional elasto-plastic finite element analyses and compares the analytical results with the experimental ones. The theoretical model is not able to consider the nonuniform shape of particle. So the shape of particle is assumed to be perfect global shape. And also particle distribution is not homogeneous in experimental specimen. It is assumed to be homogeneous in simulation model. The type of particle distribution is face-centered cubic array(FCC array). Furthermore, non-homogeneous distribution is modeled by combination of several volume fractions.

  • PDF

Thermal Elasto-Plastic Deformation Analysis of Metal Matrix Composites Considering Residual Stress and Interface Bonding Strength (잔류응력과 계면접합강도를 고려한 금속복합재료의 열탄소성 변형 해석)

  • Kang, Chung-Gil;Seo, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.227-237
    • /
    • 1999
  • As the interface bonding phenomenon between the matrix and the reinforcements has a large effect on the mechanical properties of MMCs, a sugestion of the strength analysis technique considering the residual stress and the interface bonding phenomenon is very important for the design of pans and the estimation of fatigue behavior. In this paper the three dimensional finite element anaysis is performed during the elasto-plastic deformation of the particulate reinforced metal matrix composites. It was analyzed with the volume fractions in view of microscale. Bonding strength. interface separation and matrix void growth between the matrix and the reinforcements will be predicted on deformation under tensile loading. An interface seperation is estimated by the fracture criterion which is a critical value of generalized plastic work per unit volume. The shape of the reinforcement is assumed to be a perfect sphere. And the type of the reinforcement distribution is assumed as FCC array. The thermal residual stress in MMCs is induced by the heat treatment. It is included at the simulation as an initial residual stress. The element birth and death method of the ANSYS program is used for the estimation of the interface bonding strength, void generation and propagation. It is assumed that the fracture in the matrix region begin to occur under the external loading when the plastic work per unit volume is equal to the critical value. The fracture strain will be defined. The experimental data of the extruded $SiC_p$>/606l Al composites are compared with the theoretical results.

  • PDF

A Study on the Prediction of Deformations of Plates due to Line Heating Using a Simplified Thermal Elasto-Plastic Analysis Method (간이 열탄소성 해석을 이용한 선상가열에 의한 판의 변형 예측에 관한 연구)

  • Jang, C.D.;Seo, S.I.;Ko, D.E.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.104-112
    • /
    • 1997
  • Line heating process has been used in forming hull surfaces long before and it has depended on skillful workers. As the reduction of production cost is major concern of shipbuilding companies, line heating work must be improved for higher productivity. In this paper, as the first step to automatic hull forming, a method is proposed to predict deformations due to line heating. It includes a simplified thermal elasto-plastic analysis to increase computing efficiency and to do real time visualization of deformed shapes. For the prediction of deformation, a method to estimate heat flux of the torch is also introduced. Predicted deformations for line heated plates show good agreement with experimental results. The proposed method can be used in control and simulation of line heating process with ease.

  • PDF

Prediction of Cutting Stress by 2D and 3D-FEM Analysis and Its Accuracy (2차원과 3차원 FEM 해석에 의한 절단응력의 해석 및 정도)

  • 장경호;이상형;이진형;강재훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.261-269
    • /
    • 2003
  • Steel bridges, which have been damaged by load and corrosion, need repair or strengthening. In general, before the repair welding procedure, cutting procedure carry out. Therefore, the investigating of the behavior of stress generated by cutting is so important for safety of structure. Residual stress produced by gas cutting was analyzed using 2D and 3D thermal elasto plastic FEM. According to the results, the magnitude of temperature was analyzed by 2D FEM is smaller than that was analyzed using the 3D FEM program at the start and end edge of flange. And the magnitude and distribution of residual stress of perpendicular to the cutting line was analyzed by the 2D FEM program was similar to that was analyzed by the 3D FEM program. Therefore, it is possible to predict of cutting stress by 2D and 3D FEM.

Prediction of Cutting Stress by 2D and 3D-FEM Analysis and Its Accuracy (2D-3D FEM 해석에 의한 절단응력의 해석 및 정도)

  • 장경호;이상형;이진형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.95-101
    • /
    • 2001
  • Steel bridges, which have been damaged by load and corrosion, need repair or strengthening. In general, before the repair welding procedure, cutting procedure carry out. Therefore, the investigating of the behavior of stress generated by cutting is so important for safety of structure. Residual stress produced by gas cutting was analyzed using 2D and 3D thermal elasto-plastic FEM. According to the results, the magnitude of temperature was analyzed by 2D-FEM is smaller than that was analyzed using the 3D-FEM program at the start and end edge of flange. And the magnitude and distribution of residual stress of perpendicular to the cutting line was analyzed by the 2D-FEM program was similar to that was analyzed by the 3B-FEM program. Therefore, it is possible to predict of cutting stress by 2D and 3D FEM.

  • PDF

Welding deformation analysis based on improved equivalent strain method to cover external constraint during cooling stage

  • Kim, Tae-Jun;Jang, Beom-Seon;Kang, Sung-Wook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.805-816
    • /
    • 2015
  • In the present study, external restraints imposed normal to the plate during the cooling stage were determined to be effective for reduction of the angular distortion of butt-welded or fillet-welded plate. A welding analysis model under external force during the cooling stage was idealized as a prismatic member subjected to pure bending. The external restraint was represented by vertical force on both sides of the work piece and bending stress forms in the transverse direction. The additional bending stress distribution across the plate thickness was reflected in the improved inherent strain model, and a set of inherent strain charts with different levels of bending stress were newly calculated. From an elastic linear FE analysis using the inherent strain values taken from the chart and comparing them with those from a 3D thermal elasto-plastic FE analysis, welding deformation can be calculated.

An Evaluation of Three Dimensional Finite Element Model on the Strength Prediction of Particles Reinforced MMCs (입자강화형 금속복합재료의 강도 예측에 관한 3차원 유한요소 모델의 평가)

  • 강충길;오진건
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.124-138
    • /
    • 1998
  • Particles reinforced MMCs have many advantages over monolithic metals including a higher specific modulus, higher specific strength, better properties at elevated temperatures and better wear resistance. SiC$_p$/A16061 composites have good results in its mechanical properties. This work investigates SiC$_p$/A16061 composites in the microscopic view and compares the analytical results with the experimental ones. The discrepancy of the material properties between the reinforced particle, SiC$_p$, and the matrix material, A16061 appears to be so significant. Especially the coefficient of thermal expansion(CTE) of A16061 is 5 times larger than that of SiC$_p$. Thermal residual stress in MMCs is induced at high temperatures. The shape of particle is various but the theoretical model is not able to consider the nonuniform shape. Particle distribution is not homogeneous in experimental specimen. However, it is assumed to be homogeneous in simulation model. The shapes of particles are assumed to be not only perfect global but hexahedral shapes. The types of particle distribution are two - simple cubic array(SC array) and face-centered cubic array(FCC array).

  • PDF