• Title/Summary/Keyword: 3D Surveying

Search Result 588, Processing Time 0.022 seconds

The Fracjection: An analytical system for projected fractures onto rock excavation surface from boreholes and outcrops (시추 및 야외조사 자료의 절취면 투영 분석 시스템 Fracjection)

  • Hwang, Sang-Gi;Lim, Yu-Jin
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1882-1889
    • /
    • 2007
  • Surveying rocks for engineering aims for prediction of geological feature of the construction site. Conventionally, survey information at outcrops and bore holes are projected to the construction sites, such as tunnel and slopes, and rock properties of the sites are predicted by interpretations of specialists. This system, the "Fracjection", aims to assist the specialist for visualization of the projected fractures from borehole and outcrop survey. The Fracjection accepts the BIPS and outcrop survey data to its database and allows plotting them in AutoCad map. The software also reads elevation data from contours of the topographic map and constructs DEM of the construction sites. With user's guide, it generates 3D excavation sites such as slopes and tunnels at the topographic map. The s/w projects borehole and outcrop surveyed fractures onto the modeled excavation surface and allows analysis of failure criteria, such as plane, wedge, and toppling failures by built-in stereonet function. Projected fractures can further be analyzed for structural homogeneities and rock mass quality. Moving window style correlation comparison of stereonet plots are used for formal analyses, and RQD type counts of the projected fractures are adopted for the latter analyses.

  • PDF

Collapse mechanism estimation of a historical slender minaret

  • Nohutcu, H.;Hokelekli, E.;Ercan, E.;Demir, A.;Altintas, G.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.653-660
    • /
    • 2017
  • The aim of this study is to accurately estimate seismic damage and the collapse mechanism of the historical stone masonry minaret "Hafsa Sultan", which was built in 1522. Surveying measurements and material tests were conducted to obtain a 3D solid model and the mechanical properties of the components of the minaret. The initial Finite Element (FE) model is analyzed and numerical dynamic characteristics of the minaret are obtained. The Operational Modal Analysis (OMA) method is conducted to obtain the experimental dynamic characteristics of the minaret and the initial FE model is calibrated by using the experimental results. Then, linear time history (LTH) and nonlinear time history (NLTH) analyses are carried out on the calibrated FE model by using two different ground motions. Iron clamps which used as connection element between the stones of the minaret considerably increase the tensile strength of the masonry system. The Concrete Damage Plasticity (CDP) model is selected in the nonlinear analyses in ABAQUS. The analyses conducted indicate that the results of the linear analyses are not as realistic as the nonlinear analysis results when compared with existing damage.

A Study on the Obtaining Navigation and Geo-Spatial Information Using WADGPS

  • Lee, Yong-Wook;Park, Joung-Hyun;Lee, Eun-Soo
    • Korean Journal of Geomatics
    • /
    • v.4 no.2
    • /
    • pp.59-65
    • /
    • 2004
  • Recently, a lot of interest focuses on DGPS with which it is possible to obtain 3D geographic information in real time. There are some methods to transmit corrected signals which use ground based systems as beacon, as well as wireless and TV broadcasting media. However, these methods require a large number of stations. Therefore, when the distance from station to user is increased, there is a range limit to the transmission of corrected signals. In order to solve these problems, WADGPS method using Geo-satellite is being investigated. In this study, static and kinematic tests were performed by using Satloc SLX WADGPS and Ashtech receivers. The results showed that SA was affected most among corrected signals of WADGPS; it was followed by ionospheric delay, tropospheric delay and satellite orbit errors. The accuracy of static observation was approx. $\pm$1m on SA-on. This was ten times as accurate as that of absolute observation by common receiver on SA-off. In the SA-off, the accuracy of WADGPS can be improved further. The result of kinematic tests by WADGPS acted in concert with that of standard DGPS by C/A code. It was concluded that the application of W ADGPS could improve considerably navigation and the construction of geographic information.

  • PDF

A Framework for Building Reconstruction Based on Data Fusion of Terrestrial Sensory Data

  • Lee, Impyeong;Choi, Yunsoo
    • Korean Journal of Geomatics
    • /
    • v.4 no.2
    • /
    • pp.39-45
    • /
    • 2004
  • Building reconstruction attempts to generate geometric and radiometric models of existing buildings usually from sensory data, which have been traditionally aerial or satellite images, more recently airborne LIDAR data, or the combination of these data. Extensive studies on building reconstruction from these data have developed some competitive algorithms with reasonable performance and some degree of automation. Nevertheless, the level of details and completeness of the reconstructed building models often cannot reach the high standards that is now or will be required by various applications in future. Hence, the use of terrestrial sensory data that can provide higher resolution and more complete coverage has been intensively emphasized. We developed a fusion framework for building reconstruction from terrestrial sensory data, that is, points from a laser scanner, images from digital camera, and absolute coordinates from a total station. The proposed approach was then applied to reconstructing a building model from real data sets acquired from a large complex existing building. Based on the experimental results, we assured that the proposed approach cam achieve high resolution and accuracy in building reconstruction. The proposed approach can effectively contribute in developing an operational system producing large urban models for 3D GIS with reasonable resources.

  • PDF

The Road Traffic Sign Recognition and Automatic Positioning for Road Facility Management (도로시설물 관리를 위한 교통안전표지 인식 및 자동위치 취득 방법 연구)

  • Lee, Jun Seok;Yun, Duk Geun
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.155-161
    • /
    • 2013
  • PURPOSES: This study is to develop a road traffic sign recognition and automatic positioning for road facility management. METHODS: In this study, we installed the GPS, IMU, DMI, camera, laser sensor on the van and surveyed the car position, fore-sight image, point cloud of traffic signs. To insert automatic position of traffic sign, the automatic traffic sign recognition S/W developed and it can log the traffic sign type and approximate position, this study suggests a methodology to transform the laser point-cloud to the map coordinate system with the 3D axis rotation algorithm. RESULTS: Result show that on a clear day, traffic sign recognition ratio is 92.98%, and on cloudy day recognition ratio is 80.58%. To insert exact traffic sign position. This study examined the point difference with the road surveying results. The result RMSE is 0.227m and average is 1.51m which is the GPS positioning error. Including these error we can insert the traffic sign position within 1.51m CONCLUSIONS: As a result of this study, we can automatically survey the traffic sign type, position data of the traffic sign position error and analysis the road safety, speed limit consistency, which can be used in traffic sign DB.

Comparison the Mapping Accuracy of Construction Sites Using UAVs with Low-Cost Cameras

  • Jeong, Hohyun;Ahn, Hoyong;Shin, Dongyoon;Choi, Chuluong
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • The advent of a fourth industrial revolution, built on advances in digital technology, has coincided with studies using various unmanned aerial vehicles (UAVs) being performed worldwide. However, the accuracy of different sensors and their suitability for particular research studies are factors that need to be carefully evaluated. In this study, we evaluated UAV photogrammetry using smart technology. To assess the performance of digital photogrammetry, the accuracy of common procedures for generating orthomosaic images and digital surface models (DSMs) using terrestrial laser scanning (TLS) techniques was measured. Two different type of non-surveying camera(Smartphone camera, fisheye camera) were attached to UAV platform. For fisheye camera, lens distortion was corrected by considering characteristics of lens. Accuracy of orthoimage and DSM generated were comparatively analyzed using aerial and TLS data. Accuracy comparison analysis proceeded as follows. First, we used Ortho mosaic image to compare the check point with a certain area. In addition, vertical errors of camera DSM were compared and analyzed based on TLS. In this study, we propose and evaluate the feasibility of UAV photogrammetry which can acquire 3 - D spatial information at low cost in a construction site.

Coordinate Accuracy Comparison of Online GPS Data Processing Services (온라인 GPS 자료처리 서비스의 좌표 정확도 비교분석)

  • Won, Ji-Hye;Son, Eun-Seong;Park, Kwan-Dong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.31-39
    • /
    • 2010
  • In this study, the performance of the online GPS processing services provided by diverse institutions was compared so that domestic GPS users in geodesy and surveying can easily get precise coordinates using those services. In order to evaluate the accuracy of each online GPS processing service, we calculated coordinates of seven GPS permanent stations located in Korea and foreign countries using APPS, CSRS-PPP, AUSPOS and OPUS. And the results were compared with published coordinates by IERS and National Geographic Information Institute. In the cases of foreign stations, the mean value of the horizontal errors was 9.3 mm and the descending order of accuracies was APPS, AUSPOS, OPUS and CSRS-PPP. In the cases of Korean stations, the mean value of the horizontal errors was 37.6 mm, although the order of accuracy was similar to the foreign cases; AUSPOS, APPS, OPUS and CSRS-PPP. Also, the average value of 3-D errors in Korean cases was about 3 cm larger than that of foreign cases and a bias of 3 cm was observed in the north direction.

Accuracy Analysis of 3D Position of Close-range Photogrammetry Using Direct Linear Transformation and Self-calibration Bundle Adjustment with Additional Parameters (DLT와 부가변수에 의한 광속조정법을 활용한 근접사진측량의 3차원 위치정확도 분석)

  • Kim, Hyuk Gil;Hwang, Jin Sang;Yun, Hong Sic
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.2
    • /
    • pp.27-38
    • /
    • 2015
  • In this study, the 3D position coordinates were calculated for the targets using DLT and self-calibration bundle adjustment with additional parameters in close-range photogrammetry. And then, the accuracy of the results were analysed. For this purpose, the results of camera calibration and orientation parameters were calculated for each images by performing reference surveying using total station though the composition of experimental conditions attached numerous targets. To analyze the accuracy, 3D position coordinates were calculated for targets that has been identically selected and compared with the reference coordinates obtained from a total station. For the image coordinate measurement of the stereo images, we performed the ellipse fitting procedure for measuring the center point of the circular target. And then, the results were utilized for the image coordinate for targets. As a results from experiments, position coordinates calculated by the stereo images-based photogrammetry have resulted out the deviation of less than an average 4mm within the maximum error range of less than about 1cm. From this result, it is expected that the stereo images-based photogrammetry would be used to field of various close-range photogrammetry required for precise accuracy.

A Study on Mapping 3-D River Boundary Using the Spatial Information Datasets (공간정보를 이용한 3차원 하천 경계선 매핑에 관한 연구)

  • Choung, Yun-Jae;Park, Hyen-Cheol;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.87-98
    • /
    • 2012
  • A river boundary is defined as the intersection between a main stream of a river and the land. Mapping of the river boundary is important for the protection of the properties in river areas, the prevention of flooding and the monitoring of the topographic changes in river areas. However, the utilization of the ground surveying technologies is not efficient for the mapping of the river boundary due to the irregular surfaces of river zones and the dynamic changes of water level of a river stream. Recently, the spatial information data sets such as the airborne LiDAR and aerial images are widely used for coastal mapping due to the acquisition of the topographic information without human accessibility. Due to these advantages, this research proposes a semi-automatic method for mapping of the river boundary using the spatial information data set such as the airborne LiDAR and the aerial photographs. Multiple image processing technologies such as the image segmentation algorithm and the edge detection algorithm are applied for the generation of the 3D river boundary using the aerial photographs and airborne topographic LiDAR data. Check points determined by the experienced expert are used for the measurement of the horizontal and vertical accuracy of the generated 3D river boundary. Statistical results show that the generated river boundary has a high accuracy in horizontal and vertical direction.

Generation of Progressively Sampled DTM using Model Key Points Extracted from Contours in Digital Vector Maps (수치지도 등고선의 Model Key Point 추출과 Progressive Sampling에 의한 수치지형모델 생성)

  • Lee, Sun-Geun;Yom, Jae-Hong;Lim, Sae-Bom;Kim, Kye-Lim;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_2
    • /
    • pp.645-651
    • /
    • 2007
  • In general, contours in digital vector maps, which represent terrain characteristics and shape, are created by 3D digitizing the same height points using aerial photographs on the analytical or digital plotters with stereoscopic viewing. Hence, it requires lots of task, and subjective decision and experience of the operators. DTMs are generated indirectly by using contours since the national digital maps do not include digital terrain model (DTM) data. In this study, model key points which depict the important information about terrain characteristics were extracted from the contours. Further, determination of the efficient and flexible grid sizes were proposed to generate optimal DTM in terms of both quantitative and qualitative aspects. For this purpose, a progressive sampling technique was implemented, i.e., the smaller grid sizes are assigned for the mountainous areas where have large relief while the larger grid sizes are assigned for the relatively flat areas. In consequence, DTMs with multi-grid for difference areas could be generated instead of DTMs with a fixed grid size. The multi-grid DTMs reduce computations for data processing and provide fast display.