• Title/Summary/Keyword: 3D Structure Registration

Search Result 19, Processing Time 0.024 seconds

Development of 2D-3D Image Registration Techniques for Corrective Osteotomy for Lower Limbs (하지기형 교정 수술을 위한 2D-3D 영상 정합기술)

  • Rha, In Chan;Bong, Jae Hwan;Park, Shin Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.991-999
    • /
    • 2013
  • Lower limbs deformity is a congenital disease and can also be occurred by an acquired factor. This paper suggests a new technique for surgical planning of Corrective Osteotomy for Lower Limbs (COLL) using 2D-3D medical image registration. Converting to a 3D modeling data of lower limb based on CT (computed tomography) scan, and divide it into femur, tibia and fibula; which composing the lower limb. By rearranging the model based on the biplane 2D images of X-ray data, a 3D upright bone structure was acquired. There are two ways to array the 3D data on the 2D image: Intensity-based registration and feature-based registration. Even though registering Intensity-based method takes more time, this method will provide more precise results, and will improve the accuracy of surgical planning.

Fast Structure Recovery and Integration using Improved Scaled Orthographic Factorization (개선된 직교분해기법을 사용한 빠른 구조 복원 및 융합)

  • Park, Jong-Seung;Yoon, Jong-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.3
    • /
    • pp.303-315
    • /
    • 2007
  • This paper proposes a 3D structure recovery and registration method that uses four or more common points. For each frame of a given video, a partial structure is recovered using tracked points. The 3D coordinates, camera positions and camera directions are computed at once by our improved scaled orthographic factorization method. The partially recovered point sets are parts of a whole model. A registration of point sets makes the complete shape. The recovered subsets are integrated by transforming each coordinate system of the local point subset into a common basis coordinate system. The process of shape recovery and integration is performed uniformly and linearly without any nonlinear iterative process and without loss of accuracy. The execution time for the integration is significantly reduced relative to the conventional ICP method. Due to the fast recovery and registration framework, our shape recovery scheme is applicable to various interactive video applications. The processing time per frame is under 0.01 seconds in most cases and the integration error is under 0.1mm on average.

  • PDF

Identifying Considerations for Developing SLAM-based Mobile Scan Backpack System for Rapid Building Scanning (신속한 건축물 스캔을 위한 SLAM기반 이동형 스캔백팩 시스템 개발 고려사항 도출)

  • Kang, Tae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.312-320
    • /
    • 2020
  • 3D scanning began in the field of manufacturing. In the construction field, a BIM (Building Information Modeling)-based 3D modeling environment was developed and used for the overall construction, such as factory prefabrication, structure construction inspection, plant facility, bridge, tunnel structure inspection using 3D scanning technology. LiDARs have higher accuracy and density than mobile scanners but require longer registration times and data processing. On the other hand, in interior building space management, relatively high accuracy is not needed, and the user can conveniently move with a mobile scan system. This study derives considerations for the development of Simultaneous Localization and Mapping (SLAM)-based Scan Backpack systems that move freely and support real-time point cloud registration. This paper proposes the mobile scan system, framework, and component structure to derive the considerations and improve scan productivity. Prototype development was carried out in two stages, SLAM and ScanBackpack, to derive the considerations and analyze the results.

A novel method for testing accuracy of bite registration using intraoral scanners

  • Lydia Kakali;Demetrios J. Halazonetis
    • The korean journal of orthodontics
    • /
    • v.53 no.4
    • /
    • pp.254-263
    • /
    • 2023
  • Objective: The evidence on the accuracy of bite registration using intraoral scanners is sparse. This study aimed to develop a new method for evaluating bite registration accuracy using intraoral scanners. Methods: Two different types of models were used; 10 stone models and 10 with acrylic resin teeth. A triangular frame with cylindrical posts at each apex (one anterior and two posteriors) was digitally designed and manufactured using three-dimensional (3D) printing. Such a structure was fitted in the lingual space of each maxillary and mandibular model so that, in occlusion, the posts would contact their opposing counterparts, enforcing a small interocclusal gap between the two arches. This ensured no tooth interference and full contact between opposing posts. Bite registration accuracy was evaluated by measuring the distance between opposing posts, with small values indicating high-accuracy. Three intraoral scanners were used: Medit i500, Primescan, and Trios 4. Viewbox software was used to measure the distance between opposing posts and compute roll and pitch. Results: The average maximum error in interocclusal registration exceeded 50 ㎛. Roll and pitch orientation errors ranged above 0.1 degrees, implying an additional interocclusal error of around 40 ㎛ or more. The models with acrylic teeth exhibited higher errors. Conclusions: A method that avoids the need for reference hardware and the imprecision of locating reference points on tooth surfaces, and offers simplicity in the assessment of bite registration with an intraoral scanner, was developed. These results suggest that intraoral scanners may exhibit clinically significant errors in reproducing the interocclusal relationships.

Fast Structure Recovery and Integration using Scaled Orthographic Factorization (개선된 직교분해기법을 사용한 구조의 빠른 복원 및 융합)

  • Yoon, Jong-Hyun;Park, Jong-Seung;Lee, Sang-Rak;Noh, Sung-Ryul
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.486-492
    • /
    • 2006
  • 본 논문에서는 비디오에서의 특징점 추적을 통해 얻은 2D 좌표를 이용한 3D 구조를 추정하는 방법과 네 점 이상의 공통점을 이용한 융합 방법을 제안한다. 영상의 각 프레임에서 공통되는 특징점을 이용하여 형상을 추정한다. 영상의 각 프레임에 대한 특징점의 추적은 Lucas-Kanade 방법을 사용하였다. 3D 좌표 추정 방법으로 개선된 직교분해기법을 사용하였다. 개선된 직교분해기법에서는 3D 좌표를 복원함과 동시에 카메라의 위치와 방향을 계산할 수 있다. 복원된 부분 데이터들은 전체를 이루는 일부분이므로, 융합을 통해 완성된 모습을 만들 수 있다. 복원된 부분 데이터들의 서로 다른 좌표계를 기준 좌표계로 변환함으로써 융합할 수 있다. 융합은 카메라의 모션에 해당하는 카메라의 위치와 방향에 의존된다. 융합 과정은 모두 선형으로 평균 0.5초 이하의 수행 속도를 보이며 융합의 오차는 평균 0.1cm 이하의 오차를 보였다.

  • PDF

Respiratory Motion Correction on PET Images Based on 3D Convolutional Neural Network

  • Hou, Yibo;He, Jianfeng;She, Bo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2191-2208
    • /
    • 2022
  • Motion blur in PET (Positron emission tomography) images induced by respiratory motion will reduce the quality of imaging. Although exiting methods have positive performance for respiratory motion correction in medical practice, there are still many aspects that can be improved. In this paper, an improved 3D unsupervised framework, Res-Voxel based on U-Net network was proposed for the motion correction. The Res-Voxel with multiple residual structure may improve the ability of predicting deformation field, and use a smaller convolution kernel to reduce the parameters of the model and decrease the amount of computation required. The proposed is tested on the simulated PET imaging data and the clinical data. Experimental results demonstrate that the proposed achieved Dice indices 93.81%, 81.75% and 75.10% on the simulated geometric phantom data, voxel phantom data and the clinical data respectively. It is demonstrated that the proposed method can improve the registration and correction performance of PET image.

4-Dimensional dose evaluation using deformable image registration in respiratory gated radiotherapy for lung cancer (폐암의 호흡동조방사선치료 시 변형영상정합을 이용한 4차원 선량평가)

  • Um, Ki Cheon;Yoo, Soon Mi;Yoon, In Ha;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.83-95
    • /
    • 2018
  • Purpose : After planning the Respiratory Gated Radiotherapy for Lung cancer, the movement and volume change of sparing normal structures nearby target are not often considered during dose evaluation. This study carried out 4-D dose evaluation which reflects the movement of normal structures at certain phase of Respiratory Gated Radiotherapy, by using Deformable Image Registration that is well used for Adaptive Radiotherapy. Moreover, the study discussed the need of analysis and established some recommendations, regarding the normal structures's movement and volume change due to Patient's breathing pattern during evaluation of treatment plans. Materials and methods : The subjects were taken from 10 lung cancer patients who received Respiratory Gated Radiotherapy. Using Eclipse(Ver 13.6 Varian, USA), the structures seen in the top phase of CT image was equally set via Propagation or Segmentation Wizard menu, and the structure's movement and volume were analyzed by Center-to Center method. Also, image from each phase and the dose distribution were deformed into top phase CT image, for 4-dimensional dose evaluation, via VELOCITY Program. Also, Using $QUASAR^{TM}$ Phantom(Modus Medical Devices) and $GAFCHROMIC^{TM}$ EBT3 Film(Ashland, USA), verification carried out 4-D dose distribution for 4-D gamma pass rate. Result : The movement of the Inspiration and expiration phase was the most significant in axial direction of right lung, as $0.989{\pm}0.34cm$, and was the least significant in lateral direction of spinal cord, as -0.001 cm. The volume of right lung showed the greatest rate of change as 33.5 %. The maximal and minimal difference in PTV Conformity Index and Homogeneity Index between 3-dimensional dose evaluation and 4-dimensional dose evaluation, was 0.076, 0.021 and 0.011, 0.0 respectfully. The difference of 0.0045~2.76 % was determined in normal structures, using 4-D dose evaluation. 4-D gamma pass rate of every patients passed reference of 95 % gamma pass rate. Conclusion : PTV Conformity Index was more significant in all patients using 4-D dose evaluation, but no significant difference was observed between two dose evaluations for Homogeneity Index. 4-D dose distribution was shown more homogeneous dose compared to 3D dose distribution, by considering the movement from breathing which helps to fill out the PTV margin area. There was difference of 0.004~2.76 % in 4D evaluation of normal structure, and there was significant difference between two evaluation methods in all normal structures, except spinal cord. This study shows that normal structures could be underestimated by 3-D dose evaluation. Therefore, 4-D dose evaluation with Deformable Image Registration will be considered when the dose change is expected in normal structures due to patient's breathing pattern. 4-D dose evaluation with Deformable Image Registration is considered to be a more realistic dose evaluation method by reflecting the movement of normal structures from patient's breathing pattern.

  • PDF

Automatic Generation of 3D Models using ETRI- Moire Scanner (ETRI-모아레 스캐너를 이용한 3차원 모델의 자동생성)

  • 권대현;최이배;이의택
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.11b
    • /
    • pp.47-52
    • /
    • 1999
  • The visualization of Moire or laser-scanned data has been explored by many researchers and has been an important issue on computer graphics research. In this paper, we present various techniques that handle tremendous amount of 3D range data which are generated by the ETRI- Moire Scanner. The techniques include constructing an efficient data structure, constructing triangle meshes and decimation and registration of multiple-view range images and textures.

  • PDF

3D Cadastre Data Model in Korea ; based on case studies in Seoul

  • Park, So-Young;Lee, Ji-Yeong;Li, Hyo-Sang
    • Spatial Information Research
    • /
    • v.17 no.4
    • /
    • pp.469-481
    • /
    • 2009
  • Due to the increasing demands on the efficient use of land and the fast growth of construction technologies, human living space is expanded from on the surface to above and under the surface. By recognizing that the current cadastre system based on 2D was not appropriate to reflect the trend, the researchers are interested in a 3D cadastre. This paper proposed the 3D cadastre data model that is appropriate to protect ownership effectively in Korea. The 3D cadastre data model consists of a 3D cadastre feature model and a 3D cadastre geometry model, and the data are produced by a 3D cadastre data structure. A 3D cadastre feature model is based on 3D rights and features derived from case studies. A 3D cadastre geometry model based on ISO19107 Spatial Schema is modified to be good for 3D cadastre in Korea. A 3D cadastre data structure consists of point, line, polygon and solid primitives. This study finally purposes 1) serving and managing land information effectively, 2) creating rights and displaying ranges about infrastructures above and under surface, 3) serving ubiquitous-based geoinformation, 4) adapting ubiquitous-based GIS to urban development, and 5) regulating relationships between rights of land and registration and management systems.

  • PDF

Geometric Evaluation of Patient-Specific 3D Bolus from 3D Printed Mold and Casting Method for Radiation Therapy

  • An, Hyun Joon;Kim, Myeong Soo;Kim, Jiseong;Son, Jaeman;Choi, Chang Heon;Park, Jong Min;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.30 no.1
    • /
    • pp.32-38
    • /
    • 2019
  • Purpose: The objective of this study is to evaluate the geometrical accuracy of a patient-specific bolus based on a three-dimensional (3D) printed mold and casting method. Materials and Methods: Three breast cancer patients undergoing treatment for a superficial region were scanned using computed tomography (CT) and a designed bolus structure through a treatment planning system (TPS). For the fabrication of patient-specific bolus, we cast harmless certified silicone into 3D printed molds. The produced bolus was also imaged using CT under the same conditions as the patient CT to acquire its geometrical shape. We compared the shapes of the produced bolus with the planned bolus structure from the TPS by measuring the average distance between two structures after a surface registration. Results and Conclusions: The result of the average difference in distance was within 1 mm and, as the worst case, the absolute difference did not exceed ${\pm}2mm$. The result of the geometric difference in the cross-section profile of each bolus was approximately 1 mm, which is a similar property of the average difference in distance. This discrepancy was negligible in affecting the dose reduction. The proposed fabrication of patient-specific bolus is useful for radiation therapy in the treatment of superficial regions, particularly those with an irregular shape.