• Title/Summary/Keyword: 3D Structural Analysis

Search Result 1,469, Processing Time 0.035 seconds

Modal analysis of FG sandwich doubly curved shell structure

  • Dash, Sushmita;Mehar, Kulmani;Sharma, Nitin;Mahapatra, Trupti R.;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • 제68권6호
    • /
    • pp.721-733
    • /
    • 2018
  • The modal frequency responses of functionally graded (FG) sandwich doubly curved shell panels are investigated using a higher-order finite element formulation. The system of equations of the panel structure derived using Hamilton's principle for the evaluation of natural frequencies. The present shell panel model is discretised using the isoparametric Lagrangian element (nine nodes and nine degrees of freedom per node). An in-house MATLAB code is prepared using higher-order kinematics in association with the finite element scheme for the calculation of modal values. The stability of the opted numerical vibration frequency solutions for the various shell geometries i.e., single and doubly curved FG sandwich structure are proven via the convergence test. Further, close conformance of the finite element frequency solutions for the FG sandwich structures is found when compared with the published theoretical predictions (numerical, analytical and 3D elasticity solutions). Subsequently, appropriate numerical examples are solved pertaining to various design factors (curvature ratio, core-face thickness ratio, aspect ratio, support conditions, power-law index and sandwich symmetry type) those have the significant influence on the free vibration modal data of the FG sandwich curved structure.

다변수 함수를 이용한 형상 변화에 따른 리프팅 러그의 최적 설계에 관한 연구 (Lifting Lug by the Change of form Using Multivariate Functions: An Optimal Design Study)

  • 최경신;김지준;이지한;천광우
    • 한국기계가공학회지
    • /
    • 제20권4호
    • /
    • pp.31-38
    • /
    • 2021
  • In this paper, we proposed an optimal design for determining the shape of a lifting lug freely by applying a multivariate function to the D-type lug, which is commonly used in shipyards. We derived the optimal aspect ratio of the lug through structural analysis and analyzed the safety and behavior of the lug aspect ratio. As a result, two types of final candidates, both lighter than the existing lug weight, were suitable for the ratio. They were found to have the greatest force at an angle of 45 degrees when a load of 100 tons was imposed. When the horizontal and vertical feature ratio of the lug was 1:3, it showed excellent results in terms of safety rates while maintaining weight reduction and functional aspects.

The numerical investigation of tensile strength of coal model on the performance of coal plow using Particle Flow Code

  • Fu, Jinwei;Haeri, Hadi;Sarfarazi, Vahab;Marji, Mohammad Fatehi;Li, Tong
    • Structural Engineering and Mechanics
    • /
    • 제82권6호
    • /
    • pp.713-724
    • /
    • 2022
  • Effects of coal tensile strength and plow configuration on the coal fragmentation process was modeled by two-dimensional particles flow code (PFC2D). Three tensile strength values, 0.5, 1,5 and 3.5 MPa were considered in this numerical study. The cutters of plow penetrated in the coal for 4 mm at a rate of 0.016 m/s. According to the PFC manual, the local damping factor was 0.7. Three failure mechanism of coal during the fragmentation process by plow were modelled. The coal material beneath the cutters showed the elastic, plastic and fracturing behaviors in this analysis. In all the models, the plastic zone was fractured and some micro-cracks were induced but the elastic zone remained undamaged. It was observed that the tensile strength affected the failure mechanism of coal significantly and as it increased the extent of the fractured zone underneath the plow cutter decreased during the fragmentation process.

Vortex-induced vibration characteristics of multi-mode and spanwise waveform about flexible pipe subject to shear flow

  • Bao, Jian;Chen, Zheng-Shou
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.163-177
    • /
    • 2021
  • Numerical simulations of the Vortex-Induced Vibration (VIV) about a large-scale flexible pipe subject to shear flow were carried out in this paper. Efficiency verification was performed firstly, validating that the proposed fluid-structure interaction solution strategy is competent in predicting the VIV response. Then, the VIV characteristics related to multi-mode and spanwise hybrid waveform about the flexible pipe attributed to shear flow were investigated. When inflow velocity rises, higher vibration modes are apt to be excited, and the spanwise waveform easily convertes from a standing-wave-dominated status to a hybrid standing-traveling wave status. The multi-mode or even multiple-dominant-mode is prone to occur, that is, the dominant mode is often followed by several apparent subordinate modes with considerable vibration energy. Hence, the shedding frequencies no longer obey Strouhal law, and vibration trajectories become intricate. According to the motion analysis concerning the coupled cross-flow and in-line vibrations, as well as the corresponding wake patterns, a tight coupling interaction exists between the structural deformation and the wake flow behind the flexible pipe. In addition, the evolution of the vortex tube along the pipe span and a strong 3D effect are observed due to the slenderness of the flexible pipe and the variability of the vortex shedding attributed to the shear flow.

Finite element modeling of reinforced concrete beams externally bonded with PET-FRP laminates

  • Rami A. Hawileh;Maha A. Assad;Jamal A. Abdalla; M. Z. Naser
    • Computers and Concrete
    • /
    • 제33권2호
    • /
    • pp.163-173
    • /
    • 2024
  • Fiber-reinforced polymers (FRP) have a proven strength enhancement capability when installed into Reinforced Concrete (RC) beams. The brittle failure of traditional FRP strengthening systems has attracted researchers to develop novel materials with improved strength and ductility properties. One such material is that known as polyethylene terephthalate (PET). This study presents a numerical investigation of the flexural behavior of reinforced concrete beams externally strengthened with PET-FRP systems. This material is distinguished by its large rupture strain, leading to an improvement in the ductility of the strengthened structural members compared to conventional FRPs. A three-dimensional (3-D) finite element (FE) model is developed in this study to predict the load-deflection response of a series of experimentally tested beams published in the literature. The numerical model incorporates constitutive material laws and bond-slip behavior between concrete and the strengthening system. Moreover, the validated model was applied in a parametric study to inspect the effect of concrete compressive strength, PET-FRP sheet length, and reinforcing steel bar diameter on the overall performance of concrete beams externally strengthened with PET-FRP.

Wind-induced vibration of a cantilever arch rib supported by a flexible cable system

  • Hang Zhang;Zilong Gao;Haojun, Tang;Yongle Li
    • Wind and Structures
    • /
    • 제39권1호
    • /
    • pp.71-84
    • /
    • 2024
  • The wind-resistant performance of bridges is generally evaluated based on the strip assumption. For the arch rib of arch bridges, the situation is different due to the curve axis and the variable cross-sectional size. In the construction stage, the arch rib supported by a cable system exhibits flexible dynamic characteristics, and the wind-resistant performance attracts specially attention. To evaluate the wind-induced vibration of an arch rib with the maximum cantilever state, the finite element model was established to compute the structural dynamic characteristics. Then, a three-dimensional (3D) fluid-solid coupling analysis method was realized. After verifying the reliability of the method based on a square column, the wind-induced vibration of the arch rib was computed. The vortex-induced vibration (VIV) performance of the arch rib was focused and the flow field characteristics were discussed to explain the VIV phenomenon. The results show that the arch rib with the maximum cantilever state had the possibility of VIV at high wind speeds but the galloping was not observed. The lock-in wind speeds were larger than the results based on the strip assumption. Due to the vibration of arch rib, the frequency of shedding vortices along the arch axis trended to be uniform.

시간 분해 직렬 펨토초 결정학을 위한 3차원 프린팅 기반의 초고속 믹싱 및 인젝팅 시스템 (3D Printing-Based Ultrafast Mixing and Injecting Systems for Time-Resolved Serial Femtosecond Crystallography)

  • 지인서;강전웅;김태영;강민서;권순범;홍지우
    • Korean Chemical Engineering Research
    • /
    • 제60권2호
    • /
    • pp.300-307
    • /
    • 2022
  • 매우 짧은 펄스 폭의 X선 자유전자 레이저(XFEL)를 이용한 시간 분해능 연속 펨토초 결정학(time-resolved serial femtosecond crystallography, TR-SFX)기법에서 반응 물질과 생체분자 결정 샘플간의 혼합률(mixing rate)과 결정 샘플과 X선 레이저 간의 충돌률(hit rate)은 생체분자의 시분해 구조 변화에 대한 정확한 이미지 획득 및 효율적인 샘플소비와 같은 TR-SFX의 분석 성능을 결정짓는 핵심인자이다. 본 연구에서는 극초단 내 일어나는 생체분자의 시분해 구조 변화 해석을 위해 초고속 믹싱 기능을 가짐과 동시에 공압 기반의 주문형 액적 젯팅이 가능한 두 가지 다른 방식의 샘플 전달시스템을 고안하였다. 한 방식은 이중 노즐을 통해 토출된 액적의 고속 충돌에 유발된 관성 믹싱을 기반으로 하고 있으며, 다른 방식은 마이크로믹서가 내장된 공압 젯팅을 기반으로 하고 있다. 먼저, 이중 노즐을 통해 토출된 액적의 충돌에 대한 동적 거동 및 액적 내부 관성 유동에 대한 믹싱에 대한 실험 및 수치해석적 연구를 수행하였다. 다음으로 마이크로믹서가 내장된 공압 젯팅 시스템의 성능을 유사한 방법을 통해 평가하였다. 본 연구에서 개발한 샘플 전달시스템은 질환을 유발하는 특정 단백질들의 기작을 규명하거나, 항체 의약품과 신약 후보 물질 탐색하는 데 있어 필수적인 3차원 생체 분자 구조분석 연구에 매우 유용하게 활용될 수 있을 것이다.

콩 Hypocotyl에서 Acetyl Soyasaponin $A_1$의 분리 및 구조 분석 (Isolation and Structural Analysis of Acetyl Soyasaponin $A_1$ from Hypocotyl of Soybean)

  • 김선림;방면호;김정태;지희연;정일민;김현복
    • 한국작물학회지
    • /
    • 제51권spc1호
    • /
    • pp.166-173
    • /
    • 2006
  • 본 연구는 국내육성 콩 품종 및 전통식품의 우수성을 입증하고, 생리활성이 우수한 고품질의 신품종 육성을 위한 기초기반기술 확립의 일환으로 group A soyasaponin의 분리 및 정제에 관한 연구를 수행한 결과를 요약하면 다음과 같다. 1. 콩 종실로부터 hypocotyl을 분리하고 탈지한 후 automated solvent extractor(ASE)를 이용하여 MeOH 추출 후 flash column($150mm{\times}40mm$ i.d.)을 이용하여 총 14개의 fraction을 분리하였다. 2. Flash column으로 얻어진 8 및 9번 fraction(Fraction-I) 을 Luna $C_{18}$ semipreparative reverse phase column($250cm{\times}50mm$ i.d.)을 이용하여 Fast PCLC로 정제하여 미지화합물(unknown compound : UKC)(Fr-I-2)을 분리하였다. 3. Compound 1을 NMR($^1H-NMR$, 600 MHz; $^{13}C-NMR$, 100 MHz; DEPT), IR, UV 및 ESI-MS 분석을 통하여 구조를 동정한 결과 분자량(MW)이 1436.6이며, 분자식이 $C_{67}H_{104}O_{33}$인 group A 계열의 acetyl soyasaponin $A_1$으로 확인되었다.

회전익기의 축계 경량화를 위한 최적설계 (Optimal Design for Weight Reduction of Rotorcraft Shaft System)

  • 김재승;문상곤;한정우;이근호;김민근
    • 한국전산구조공학회논문집
    • /
    • 제35권4호
    • /
    • pp.243-248
    • /
    • 2022
  • 본 논문에서는 1차원 오일러 보 요소(Euler-Bernoulli Beam Element)를 이용한 회전익기 축계에 대한 중량 최적설계를 수행하였다. 회전 축계의 특성을 고려해 비틀림(Torsion)과 베어링과 같은 축지지 강성 및 플랜지(Flange) 질량을 모두 고려하였고, 동적 안전성 확보를 위해 고유치 해석을 수행하여 임계속도(Critical Speed)와 기어박스로부터 오는 치 변형 가진을 회피할 수 있도록 하였다. 축의 길이는 고정된 상태에서 두께와 반경을 조절하여 중량 최적화를 수행하였으며, 최적화 과정은 2단계로 나누어 진행하였다. 1단계에서는 비틀림 강도를 제약조건으로 하여 중량을 최적화한 후 2단계에서는 축계 안정성 확보 기준(Headquarters, U.S. Army Material Command, 1974)에 따라 축의 비틀림 강도에 대한 제약조건을 만족시키며, 축의 1차 모드가 임계속도를 회피할 수 있도록 축 1차모드와 임계속도의 차이가 최대가 되도록 최적화를 진행하였다. 주어진 1차원 보 요소를 이용하여 최적설계를 한 결과를 3차원 유한요소 모델과 실제 제작된 축게의 시험결과와 비교하여 제안된 방법을 검증하였다.

Effect of damage on permeability and hygro-thermal behaviour of HPCs at elevated temperatures: Part 2. Numerical analysis

  • Gawin, D.;Majorana, C.E.;Pesavento, F.;Schrelfer, B.A.
    • Computers and Concrete
    • /
    • 제2권3호
    • /
    • pp.203-214
    • /
    • 2005
  • In the Part 1 paper (Gawin, et al. 2005) some experimental results concerning micro-structural tests, permeability measurements and stress-strain tests of four types of High Performance Concrete, exposed to elevated temperatures (up to $700^{\circ}C$) are presented and discussed. On the basis of these experimental results parameters of the constitutive relationships describing influence of damage and temperature upon material intrinsic permeability at high temperature were determined. In this paper the effects of various formulations of damage-permeability coupling on results of computer simulations are analysed and compared with the results obtained by means of the previously proposed approach, that does not take into account the thermo-chemical concrete damage directly. Numerical solutions are obtained using the recently developed fully coupled model of hygro-thermal and damage phenomena in concrete at elevated temperatures. High temperature effects are considered by means of temperature and pressure dependence of several material parameters. Based on the mathematical model, the computer code HITECOSP was developed. Material parameters of the model were measured by several European laboratories, which participated in the "HITECO" research project. A model problem, concerning hygro-thermal behaviour and degradation of a HPC structure during fire, is solved. The influence of two different constitutive descriptions of the concrete permeability changes at high temperature, including thermo-chemical and mechanical damage effects, upon the results of computer simulations is analysed and discussed.