• Title/Summary/Keyword: 3D Structural Analysis

Search Result 1,458, Processing Time 0.032 seconds

A Structural Equation Model of General High School Students' Happiness: Mediation Effect of Self-esteem and Resilience (일반고 고등학생의 행복감 구조모형: 자아존중감과 회복탄력성의 매개효과)

  • Park, Seon Hyang;Park, Jeong Sook
    • Research in Community and Public Health Nursing
    • /
    • v.31 no.3
    • /
    • pp.395-404
    • /
    • 2020
  • Purpose: This study was conducted to develop a predictive model for happiness of students in general high schools. The study was based on the theory of happiness integration and the literature review. Methods: Data were collected using a convenience sample of 231 first and second grade students in five general high schools in D city and K Province. The exogenous variables were optimism as personality factors, parenting attitude, academic stress and friend's support as happiness. The endogenous variables were self-esteem and resilience as mediating variables, and happiness of students in general high schools. Data collection was done from March 14 to March 28, 2019. The AMOS 22.0 and SPSS programs were used to verify the validity of confirmatory factor analysis and hypothesis models. Results: The factors that have the greatest influence on happiness of high school students are self-esteem and resilience. The explanatory power of happiness by these variables was 98.1%. The individual mediating effect and double mediation effect of these variables were found to be significant. Conclusion: As student's optimistic personality, parent's positive parenting attitude, and friend's support improve student's self-esteem and resilience, ultimately positively affecting high school students' happiness, so it is necessary to consider these factors and try to develop a happiness improvement program.

Seismic Retrofit in Educational Facilities Using Attaching Composite Material (부착형 복합소재를 이용한 교육시설의 내진보강)

  • Park, Choon-Wook;Song, Geon-Su;Park, Ik-Hyun;Kim, Dong-Hwi
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.3
    • /
    • pp.73-81
    • /
    • 2013
  • In paper after the strong earthquake of recently the Korea neighborhood, the Korean government survey show that the 86% of school buildings in Korea are in potential damage risk and only 14% of them are designed as earthquake-resistance buildings. Earthquake Reinforcing projects of school have been a leading by the ministry of education, however their reinforcing methods done by not proved a engineering by experiment which results in uneconomical and uneffective rehabilitation for the future earthquake. An experimental and analytical study have been conducted for the shear reinforcing method of column by axis and horizontal axis load using attaching composite beam. Based on the previous research, in this study, Design examples are given to show the performance evaluation for the column reinforcing of old school buildings using nonlinear analysis is going to be conducted and strengthening method is going to be on the market after their performance is proved by the test.

Thermal cracking assessment for nuclear containment buildings using high-strength concrete

  • Yang, Keun-Hyeok;Mun, Jae-Sung;Kim, Do-Gyeum;Chang, Chun-Ho;Mun, Ju-Hyun
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.429-438
    • /
    • 2020
  • To shorten the construction times of nuclear facility structures, three high-strength concrete mixtures were developed with specific consideration given to their curing temperatures, their economic efficiency, and the practicality of their quality control. This study was conducted to examine the temperature rise profiles of these three concrete mixtures and the potential for early-age thermal cracking in the primary containment vessel of a nuclear reactor with a wall thickness of 1200 mm. The one-layer placement height of the concrete for the primary containment vessel was increased from the conventional 3 m to 3.5 m. A nonlinear finite element analysis (FEA) was conducted using the thermal properties of concrete determined from the isothermal hydration and adiabatic hydration tests, and tuned through comparisons made with temperature rise profiles obtained for 1200-mm-thick mock-up wall specimens cured at temperatures of 5, 20, and 35℃. The hydration heat performance of the three concrete mixtures and their potential to produce thermal cracking in nuclear facilities indicate that the mixtures have considerable potential for practical application to the primary containment vessel of a nuclear reactor at various curing temperatures, fulfilling the minimum requirements of the ACI 301 and minimizing the likelihood of the occurrence of thermal cracks.

A STUDY ON WATER ENTRY OF TWO-DIMENSIONAL CROSS-SECTIONAL SHAPE USING SNUFOAM (SNUFOAM을 이용한 2차원 선박단면 형상의 입수 충격에 대한 연구)

  • Jang, D.J.;Choi, Y.M.;Choi, H.K.;Rhee, S.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.55-63
    • /
    • 2016
  • Nowadays, large container ships are continually developed and that's why the bow and stern structural stability problems by slamming become a significant more and more. However, due to the complexity of slamming, it is difficult to consider those problems at the design stage. For this reason, we attempt numerical analysis through SNUFOAM by generating the bow and stern two-dimensional cross-sectional grid in WILS JIP experiment at KRISO. Unlike the conventional method for the computation time saving, by setting the inlet flow conditions referred to the model test, we analyzed the slamming without applying the grid deformation method. As a result, when the stern model, as in the previous studies, it was possible to obtain quantitatively the fluid impulse is close to the experimental results. When the bow model, we can found the change by the position of force sensors which are derived for the bulbous bow and obtained fluid impulse and flow shape at slamming similar to the model test.

Impact Behavior of Laminated Composite using Progressive Failure Model (단계적 파괴 모델에 의한 적층 복합재료의 충격거동 해석)

  • 강문수;이경우;강태진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.102-105
    • /
    • 2000
  • Recently, applications of integrated large composite structures have been attempted to many structures of vehicles. To improve the cost performance and reliability of the integrated composite structures, it is necessary to judge structural integrity of the composite structures. For the judgement, we need fracture simulation techniques for composite structures. Many researches oil the fracture simulation method using FEM have been reported by now. Most of the researches carried out simulations considering only matrix cracking and fiber breaking as fracture modes, and did not consider delamination. Several papers have reported the delamination simulation, but all these reports require three-dimensional elements or quasi three- dimensional elements for FEM analysis. Among fracture mechanisms of composite laminates, delamination is the most important factor because it causes stiffness degradation in composite structures. It is known that onset and propagation of delamination are dominated by the strain energy release rate and interfacial moment. In this study, laminated composite has been described by using 3 dimensional finite elements. Then impact behavior of the laminated composite is simulated using FEM(ABAQUS/Explicit) with progressive failure mechanism. These results are compared with experimental results.

  • PDF

Development of Automatic Packing System of One Station for Fasteners(I): Optimization Design of Packing Mechanism (원 스테이션 파스너 자동포장기 개발(I): 패킹 메커니즘의 최적설계)

  • Kim, Yong-Seok;Jeong, Chan-Se;Yang, Soon-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.335-341
    • /
    • 2011
  • In this paper, we proposed an automatic packing mechanism of one station concept for fastener objects where the continuous work is performed in a finite space. The proposed packing mechanism is composed of supporting frame, feeding supply, air shower device, clamping/opening device, batch charging device, sealing/cutting device and supply adjusting device. And, these mechanisms have been modularized through mechanical, dynamical, structural and fluid optimized design using the SMO(SimDesigner Motion) analysis module. Also, the virtual prototype was carried out using the 3-D CAD program. The packing process is consisted performed in the order of feeding, clamping, bottom sealing, cutting, opening, object charging, closing and the upper sealing. And the time of these cycles were designed to be completed in 15-20 seconds. This packing mechanism will be created as a prototype in the near future. In addition, it will be applied to the production scenes after going through a field test for the validation of performance.

Shear center for elastic thin-walled composite beams

  • Pollock, Gerry D.;Zak, Adam R.;Hilton, Harry H.;Ahmad, M. Fouad
    • Structural Engineering and Mechanics
    • /
    • v.3 no.1
    • /
    • pp.91-103
    • /
    • 1995
  • An analysis to determine shear centers for anisotropic elastic thin-walled composite beams, cantilevered and loaded transversely at the free end is presented. The shear center is formulated based on familiar strength of material procedures analogous to those for isotropic beams. These procedures call for a balancing of torsional moments on the cross sectional surface and lead to a condition of zero resultant torsional couple. As a consequence, due the presence of anisotropic coupling, certain non-classical effects are manifested and are illustrated in two example problems. The most distinguishing result is that twisting may occur for composite beams even if shear forces are applied at the shear center. The derived shear center locations do not depend on any specific anisotropic bending theories per se, but only on the values of bending and shear stresses which such theories produce.

Seismic response of RC frames under far-field mainshock and near-fault aftershock sequences

  • Hosseini, Seyed Amin;Ruiz-Garcia, Jorge;Massumi, Ali
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.395-408
    • /
    • 2019
  • Engineered structures built in seismic-prone areas are affected by aftershocks in addition to mainshocks. Although aftershocks generally are lower in magnitude than that of the mainshocks, some aftershocks may have higher intensities; thus, structures should be able to withstand the effect of strong aftershocks as well. This seismic scenario arises for far-field mainshock along with near-field aftershocks. In this study, four 2D reinforced concrete (RC) frames with different numbers of stories were designed in accordance with the current Iranian seismic design code. As a way to evaluate the seismic response of the case-study RC frames, the inter-story drift ratio (IDR) demand, the residual inter-story drift ratio (RIDR) demand, the Park-Ang damage index, and the period elongation ratio can be useful engineering demand parameters for evaluating their seismic performance under mainshock-aftershock sequences. The frame models were analyzed under a set of far-field mainshock, near-fault aftershocks seismic sequences using nonlinear dynamic time-history analysis to investigate the relationship among IDR, RIDR, Park-Ang damage index and period ratio experienced by the frames. The results indicate that the growth of IDR, RIDR, Park-Ang damage index, and period ratio in high-rise and short structures under near-fault aftershocks were significant. It is evident that engineers should consider the effects of near-fault aftershocks on damaged frames that experience far-field mainshocks as well.

Experimental and analytical investigation on seismic behavior of RC framed structure by pushover method

  • Sharma, Akanshu;Reddy, G.R.;Eligehausen, R.;Vaze, K.K.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.1
    • /
    • pp.125-145
    • /
    • 2011
  • Pushover analysis has gained significant popularity as an analytical tool for realistic determination of the inelastic behaviour of RC structures. Though significant work has been done to evaluate the demands realistically, the evaluation of capacity and realistic failure modes has taken a back seat. In order to throw light on the inelastic behaviour and capacity evaluation for the RC framed structures, a 3D Reinforced concrete frame structure was tested under monotonically increasing lateral pushover loads, in a parabolic pattern, till failure. The structure consisted of three storeys and had 2 bays along the two orthogonal directions. The structure was gradually pushed in small increments of load and the corresponding displacements were monitored continuously, leading to a pushover curve for the structure as a result of the test along with other relevant information such as strains on reinforcement bars at critical locations, failure modes etc. The major failure modes were observed as flexural failure of beams and columns, torsional failure of transverse beams and joint shear failure. The analysis of the structure was by considering all these failure modes. In order to have a comparison, the analysis was performed as three different cases. In one case, only the flexural hinges were modelled for critical locations in beams and columns; in second the torsional hinges for transverse beams were included in the analysis and in the third case, joint shear hinges were also included in the analysis. It is shown that modelling and capturing all the failure modes is practically possible and such an analysis can provide the realistic insight into the behaviour of the structure.

The effect of infill walls on the fundamental period of steel frames by considering soil-structure interaction

  • Kianoosh Kiani;Sayed Mohammad Motovali Emami
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.417-431
    • /
    • 2024
  • The fundamental period of vibration is one of the most critical parameters in the analysis and design of structures, as it depends on the distribution of stiffness and mass within the structure. Therefore, building codes propose empirical equations based on the observed periods of actual buildings during seismic events and ambient vibration tests. However, despite the fact that infill walls increase the stiffness and mass of the structure, causing significant changes in the fundamental period, most of these equations do not account for the presence of infills walls in the structure. Typically, these equations are dependent on both the structural system type and building height. The different values between the empirical and analytical periods are due to the elimination of non-structural effects in the analytical methods. Therefore, the presence of non-structural elements, such as infill panels, should be carefully considered. Another critical factor influencing the fundamental period is the effect of Soil-Structure Interaction (SSI). Most seismic building design codes generally consider SSI to be beneficial to the structural system under seismic loading, as it increases the fundamental period and leads to higher damping of the system. Recent case studies and postseismic observations suggest that SSI can have detrimental effects, and neglecting its impact could lead to unsafe design, especially for structures located on soft soil. The current research focuses on investigating the effect of infill panels on the fundamental period of moment-resisting and eccentrically braced steel frames while considering the influence of soil-structure interaction. To achieve this, the effects of building height, infill wall stiffness, infill openings and soil structure interactions were studied using 3, 6, 9, 12, 15 and 18-story 3-D frames. These frames were modeled and analyzed using SeismoStruct software. The calculated values of the fundamental period were then compared with those obtained from the proposed equation in the seismic code. The results indicate that changing the number of stories and the soil type significantly affects the fundamental period of structures. Moreover, as the percentage of infill openings increases, the fundamental period of the structure increases almost linearly. Additionally, soil-structure interaction strongly affects the fundamental periods of structures, especially for more flexible soils. This effect is more pronounced when the infill wall stiffness is higher. In conclusion, new equations are proposed for predicting the fundamental periods of Moment Resisting Frame (MRF) and Eccentrically Braced Frame (EBF) buildings. These equations are functions of various parameters, including building height, modulus of elasticity, infill wall thickness, infill wall percentage, and soil types.