• Title/Summary/Keyword: 3D Spatial information

Search Result 1,107, Processing Time 0.027 seconds

Case Study of Smart Phone GPS Sensor-based Earthwork Monitoring and Simulation (스마트폰 GPS 센서 기반의 토공 공정 모니터링 및 시뮬레이션 활용 사례연구)

  • Jo, Hyeon-Seok;Yun, Chung-Bae;Park, Ji-Hyeon;Han, Sang Uk
    • Journal of KIBIM
    • /
    • v.12 no.4
    • /
    • pp.61-69
    • /
    • 2022
  • Earthmoving operations account for approximately 25% of construction cost, generally executed prior to the construction of buildings and structures with heavy equipment. For the successful completion of earthwork projects, it is crucial to constantly monitor earthwork equipment (e.g., trucks), estimate productivity, and optimize the construction process and equipment on a construction site. Traditional methods however require time-consuming and painstaking tasks for the manual observations of the ongoing field operations. This study proposed the use of a GPS sensor embedded in a smartphone for the tracking and visualization of equipment locations, which are in turn used for the estimation and simulation of cycle times and production rates of ongoing earthwork. This approach is implemented into a digital platform enabling real-time data collection and simulation, particularly in a 2D (e.g., maps) or 3D (e.g., point clouds) virtual environment where the spatial and temporal flows of trucks are visualized. In the case study, the digital platform is applied for an earthmoving operation at the site development work of commercial factories. The results demonstrate that the production rates of various equipment usage scenarios (e.g., the different numbers of trucks) can be estimated through simulation, and then, the optimal number of tucks for the equipment fleet can be determined, thus supporting the practical potential of real-time sensing and simulation for onsite equipment management.

Estimation of Flow Population of Seoul Walking Tour Courses Using Telecommunications Data (통신 데이터를 활용한 도보관광코스 유동인구 추정 및 분석)

  • Park, Ye Rim;Kang, Youngok
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.1
    • /
    • pp.181-195
    • /
    • 2019
  • This study aims to analyze the spatial context by analyzing the flow characteristics of the walking tour course and visualizing effectively using the floating population data constructed through the communication data. The floating population data refinement algorithm was developed for estimation flow population along the road and the floating population data for each walking tour courses was constructed. In order to adopt the algorithm for forming suitable for the analysis of the walking tour courses, the estimation of floating population considering the area of the road and the estimation of floating population considering the value of floating population around the road were compared. As a result, the estimation of floating population considering ambient the values of flow population was adopted, which is more appropriate to apply analysis method due to the relatively consistent data. Then, a datamining algorithm for walking tour course was constructed according to the characteristics of the floating population data, the absence of missing values. Finally, this study analyzed the flow characteristics and spatial patterns of 18 walking trails in Seoul through the floating population data according to walking tour course. To do this, the kernel density analysis and the Getis-Ord $G^*_i$ statistical hotspot analysis were applied to visualize the main characteristics of each walking tour course.

Road Extraction from Images Using Semantic Segmentation Algorithm (영상 기반 Semantic Segmentation 알고리즘을 이용한 도로 추출)

  • Oh, Haeng Yeol;Jeon, Seung Bae;Kim, Geon;Jeong, Myeong-Hun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.239-247
    • /
    • 2022
  • Cities are becoming more complex due to rapid industrialization and population growth in modern times. In particular, urban areas are rapidly changing due to housing site development, reconstruction, and demolition. Thus accurate road information is necessary for various purposes, such as High Definition Map for autonomous car driving. In the case of the Republic of Korea, accurate spatial information can be generated by making a map through the existing map production process. However, targeting a large area is limited due to time and money. Road, one of the map elements, is a hub and essential means of transportation that provides many different resources for human civilization. Therefore, it is essential to update road information accurately and quickly. This study uses Semantic Segmentation algorithms Such as LinkNet, D-LinkNet, and NL-LinkNet to extract roads from drone images and then apply hyperparameter optimization to models with the highest performance. As a result, the LinkNet model using pre-trained ResNet-34 as the encoder achieved 85.125 mIoU. Subsequent studies should focus on comparing the results of this study with those of studies using state-of-the-art object detection algorithms or semi-supervised learning-based Semantic Segmentation techniques. The results of this study can be applied to improve the speed of the existing map update process.

Analysis of Organic Carbon Cycle and Mass Balance in Daecheong Reservoir using Three-dimensional Hydrodynamic and Water Quality Model (3차원 수리·수질 모델을 이용한 대청호 유기탄소 순환 및 물질수지 해석)

  • An, Inkyung;Park, Hyungseok;Chung, Sewoong;Ryu, Ingu;Choi, Jungkyu;Kim, Jiwon
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.4
    • /
    • pp.284-299
    • /
    • 2020
  • Dam reservoirs play a particularly crucial role in processing the allochthonous and the autochthonous dissolved (DOC) and the particulate (POC) organic carbon and in the budget of global carbon cycle. However, the complex physical and biogeochemical processes make it difficult to capture the temporal and spatial dynamics of the DOC and the POC in reservoirs. The purpose of this study was to simulate the dynamics of the DOC and the POC in Daecheong Reservoir using the 3-D hydrodynamics and water quality model (AEM3D), and to quantify the mass balance through the source and sink fluxes analysis. The AEM3D model was calibrated using field data collected in 2017 and showed reasonable performance in the water temperature and the water quality simulations. The results showed that the allochthonous and autochthonous proportions of the annual total organic carbon (TOC) loads in the reservoir were 55.5% and 44.5%, respectively. In season, the allochthonous loading was the highest (72.7%) in summer, while in autumn, the autochthonous loading was the majority (77.1%) because of the basal metabolism of the phytoplankton. The amount of the DOC discharged to downstream of the dam was similar to the allochthonous load into the reservoir. However, the POC was removed by approximately 96.6% in the reservoir mainly by the sedimentation. The POC sedimentation flux was 36.21 g-C/㎡/yr. In terms of space, the contribution rate of the autochthonous organic carbon loading was high in order of the riverine zone, the transitional zone, and the lacustrine zone. The results of the study provide important information on the TOC management in the watersheds with extensive stagnant water, such as dam reservoirs and weir pools.

A Simulation Model Development to Analyze Effects on LiDAR Acquisition Parameters in Forest Inventory (산림조사에서의 항공라이다 취득인자에 따른 영향분석을 위한 시뮬레이션 모델 개발)

  • Song, Chul-Chul;Lee, Woo-Kyun;Kwak, Doo-An;Kwak, Han-Bin
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.06a
    • /
    • pp.310-317
    • /
    • 2008
  • Although aerial LiDAR had been launched commercially several years ago, it is still difficult to study data acquisition conditions and effects with various datasets because of its acquisition cost. Thus, this research was performed to study data acquisition conditions and effects with virtually various datasets. For this research, 3D tree models and forest stand models were built to represent graded tree sizes and tree plantation densities. Also, a variable aerial LiDAR acquisition model was developed. Then, through controlling flight height parameter, one of the data acquisition parameters, virtual datasets were collected for various data acquisition densities. From those datasets, forest canopy volumes and maximum tree heights were estimated and the estimated results were compared. As the results, the estimated is getting closer to the expected during the data acquisition density increase. This research would be helpful to perform further studios on relations between forest inventory accuracy and LiDAR cost.

  • PDF

Validation on the Utilization of Small-scale Unmanned Aerial Systems(sUAS) for Topographic Volume Calculations (토공량 산정을 위한 소형무인항공시스템의 활용성 평가)

  • Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.111-126
    • /
    • 2017
  • Small-scale UAS(Fusion technique of Unmanned Aerial Vehicles platform and Sensors, 'sUAS') opens various new applications in construction fields and so becoming progressively common due to the considerable potentials in terms of accuracy, costs and abilities. The purpose of this study is that the investigation of the validation on the utilization of sUAS for earth stockpile volume calculations on sites. For this, generate 3D models(DSM) with sUAS aerial images on an cone shaped soil stockpile approximately $270m{\times}300m{\times}20m$, which located at Baegot Life Park in Siheung-si, compared stockpile volume estimates produced by sUAS image analysis, against volume estimates obtained by GNSS Network-RTK ground surveying method which selected as the criteria of earth stockpile volume. The result through comparison and examination show(demonstrate) that there was under 2% difference between the volume calculated with the GNSS Network RTK data and the sUAV data, especially sUAS imaged-based volume estimate of a stockpile can be greatly simplified, done quickly, and very cost effective over conventional terrestrial survey methods. Therefore, with consideration of various plan to assess the height of vegetation, sUAS image-based application expected very useful both volume estimate and 3D geospatial information extraction in small and medium-sized sites.

Program Development and Field Application for the use of the Integration Map of Underground Spatial Information (지하공간통합지도 활용을 위한 프로그램 개발 및 현장 적용)

  • Kim, Sung Gil;Song, Seok Jin;Cho, Hae Yong;Heo, Hyun Min
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.483-490
    • /
    • 2021
  • Due to the recent increase in various problems from underground development in urbanized areas, accurate underground facility information management is highly needed. Therefore, in this study, in order to utilize the Integration Map of Underground Goespatial Information in real time on-site, the function of comparing the mutual location of the GPR (Ground Penetration Radar) sensing data and the Integration Map of Underground Goespatial Information, and function of analyze underground facilities, and function of converting surveying data into a shape file through position correction & attribute editing in a 3D space, and the function of submitting the shape file to the Integration Map of Underground Goespatial Information mobile center was defined and developed as a program. In addition, for the on-site application test of the development program, scenarios used at the underground facility real-time survey site and GPR exploration site were derived, and four sites in Seoul were tested to confirm that the use scenario worked properly. Through this, the on-site utilization of the program developed in this study could be confirmed, and it would contribute to the confirmation of the quality of Shape-file and the "update automation" of "Integration Map of Underground Goespatial Information". In addition, it is expected that the development program will be further applied to the Underground Facility Map's Accuracy Improvement Diffusion Project' promoted by the MOLIT (Ministry of Land, Infrastructure, and Transport).

Structural Performance Evaluation of Anchors for Power Equipment Electrical Cabinets Considering On-Site Installation Conditions (현장 설치 조건을 고려한 발전설비 전기 캐비닛 정착부 앵커의 구조성능 평가)

  • Lee, Sang-Moon;Jung, Woo-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.709-719
    • /
    • 2023
  • In general, most of the electrical equipment responsible for control within power plants is housed in self-standing cabinets. These cabinets are typically fixed to a slab using post-installed anchors. Although the fixation method of using post-installed anchors provides stability, there is a risk of conductor failure due to external forces, including moments. However, the performance assessment of current anchors is only evaluated through uniaxial material tests. Therefore, the primary purpose of this study is to compare the static performance of post-installed anchors, considering on-site installation conditions, with their performance in material tests and to analyze the behavioral characteristics of the anchors. While conducting experiments using actual cabinets would be ideal, practical and spatial constraints make this approach difficult. As an alternative, experiments were conducted using a test specimen consisting of a steel column and a support. As a result, the pull-out performance of anchors reflecting on-site installation conditions was measured to be about 10% higher than that observed in material tests. The trends in load reduction and the point of maximum performance for the anchors also differed. To verify the reliability of the experimental study, a 3D FEM analysis was performed, which will provide predictive information on the loads transferred to the post-installed anchors for structural performance evaluations of electrical cabinets using shaking table test in the future.

A Hybrid Shadow Testing Scheme During Ray Tracing (광선추적 수행중 혼합 음영검사에 관한 연구)

  • Eo, Kil-Su;Kyung, Chong-Min
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.3
    • /
    • pp.95-104
    • /
    • 1989
  • This paper presents a new shadow testing acceleration scheme for ray tracing called Hybrid Shadow Testing (HST) based on a conditional switching between the conventinal shadow testing method and Crow's shadow volume method, where the shadow polygons as well as the object polygons are registered onto the corresponding cells under the 3-D space subdivision environment. Despite the preprocessing time for the generation and registration of the shadow polygons, the total shadow testing time of the proposed algorithm, HST was approximately 50% of that of the conventional shadow testing method for several examples while the total ray tracing time was typically reduced by 30% from the conventional approach. This due to the selective use of the shadow volume method with a compromise between the maximal utilisation of shadow's spatial coherency and minimising the computational overhead for checking ray intersections with the shadow polygons. A parameter, $N_{th}$ denoting the critical number of shadow polygons between successive reflection points was used as a guideline for switching the shadow testing scheme between the conventional method and shadow volume method. A method for calculating $N_{th}$ from such statistical data as the number of object polygons, average polygon size average peripheral length of the polygons was proposed, resulting in good agreement with the experimental results.

  • PDF

Development of Cadastral Record Model for Introduction of 3D-Cadastre (입체지적 도입을 위한 지적공부모형 개발)

  • An, Byeong-Gu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.107-116
    • /
    • 2010
  • The existing cadastral record cannot meet various and changing demands on land information, improve user convenience, and raise administrative efficiency. In addition, three-dimensional parcels, or spatial objects about three-dimensional space cannot be registered in the conventional cadastral record. The limitation of cadastral information based on two dimensions is quite stressing the necessity of three-dimensional cadastral record. The purpose of this study is to develop new limns of cadastral record model in order. In register three-dimensional positions and right relations of land and buildings. This study examined land cases where space was being three-dimensionally used. As the result, cadastral record models both separated by steps and integrated were developed, which can contain matters of land, buildings, and right registration about three-dimensional land parcels. Also, this study suggested a method where a building can be separately registered according to it's the superficies division.