• Title/Summary/Keyword: 3D Spatial information

Search Result 1,121, Processing Time 0.036 seconds

Evaluation of 3D-Positioning Method Using X-band SAR Satellite Images - Focused on InSAR, Radargrammetry and RPC (X-band SAR 위성영상의 3차원 위치결정 기법 평가 - 레이더 간섭기법, Radargrammetry, RPC를 중심으로)

  • Song, Yeong Sun;Lee, Jung Han;Jang, In Tae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.117-125
    • /
    • 2014
  • Korea's first X-band SAR satellite KOMPSAT-5 has been launched in 2013, so the research related to the X-band SAR satellite image is required to increase the utilization of KOMPSAT-5. In this study, we generated a DEM(Digital Elevation Model) using X-band SAR satellite images based on three methods which are InSAR, radargrammetry and RPC(Rational Polynomial Coefficients), and evaluated the performance of each methods. The four stripmap mode TerraSAR-X images taken in Daejeon were used to generate DEM, and accuracy was evaluated using DEM by IKONOS RPC. As results, DEM produced by the InSAR showed the highest accuracy. Also, we knew that RPC could be effective method if you want to create a large area DEM which contains the various elevation.

Vanishing Point Detection Method Using Multiple Initial Vanishing Points (다중 초기 소실점을 이용한 소실점 검출 방법)

  • Lee, Chang-Hyung;Choi, Hyung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.2
    • /
    • pp.231-239
    • /
    • 2018
  • In this paper, we propose a vanishing point detection method using multiple initial vanishing points. Vanishing points are important geometric information that is used for reconstructing 3D structures. Three vanishing points are detected for indoor scenes. In the previous work, it could be inaccurate to detect only one initial vanishing point, because initial vanishing point getting most highest sum of voting could be deferent from the best initial vanishing point. Therefore the method which sets multiple initial vanishing point and detects a best vanishing point from them gives us preparation for the prior case. Also in this paper, we propose a adjusting vanishing point method by postprocessing of detected vanishing points. We could detect more accurate vanishing point by using postprocessing. Experimental results show that the accuracy of the vanishing point detection is about 1~2% higher than that of the existing method through the proposed method and the performance is improved accordingly.

A Study on Fast Datum Transformation model for GIS (지리정보시스템을 위한 고속 측지계 변환 모델 연구)

  • Suh, Yong-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.3
    • /
    • pp.48-56
    • /
    • 2004
  • This research focuses on the development of a fast datum transformation model to be used in GIS that utilizes real-time data transformation. Instance, when a GIS data constructed according to a datum is conformed to another datum, instead of transforming the axes of the original data, the data is transformed right before the results are reflected on the monitor. In this research, the prospects of calculating transformation parameters for every grid cells on the area based on two-dimensional conformal transformation model in order to decrease real-time datum transformation time while maintaining a high accuracy has been investigated. Research results showed that for a fixed area, the accuracies of the two-dimensional conformal transformation and the three-dimensional datum transformation, which requires more computing time, were almost equal and fast transformation speed, high accuracy real-time datum transformation is made feasible by implementing the grid-divided two-dimensional conformal transformation model.

  • PDF

Qualitative Analysis of Coast Topographic Using RTK-GPS (RTK-GPS 측량을 이용한 해안지형의 정성적 분석)

  • Kim, Yong-Suk;Lee, Jae-One
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.2 s.40
    • /
    • pp.77-85
    • /
    • 2007
  • According to the survey data during the Japanese Occupation Period, the length of South Korea's coastline is about 11,542 km, including the coastlines of land and islands. It will be very expensive and time-consuming to revise/renew accurately this coastline data through site survey, it will cost great money and time. Also, various development projects such as reclamation works on public waters, constructions of ports/harbors, etc. are frequently changing the coastal areas and coastlines, causing many renewal projects on coastal maps. For such reason, appropriate alternatives for site survey are necessary. This paper demonstrate the utilization of RTK-GPS survey data, qualitative analysis and 3D topographic analysis for extracting the change in five coastal areas (Songjeong, Haeundae, Kwanganri, Songdo and Dadaepo). The local experimental areas subjected for this research were limited to five coastal areas near Busan.

  • PDF

Assessment of actual condition based on GIS for UHF band Propagation Interference caused by Apartment (GIS를 활용한 아파트 지역의 전파 장애 실태 평가)

  • 김진택;엄정섭
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.389-397
    • /
    • 2004
  • 본 연구는 GIS를 이용하여 아파트 단지의 UHF대역의 전파장애에 대한 예측모델을 제시한다. 전파예측모델은 기지국 및 중계기 위치설계와 전파음영지역 결정 등 무선네트워크 서비스에 결정적으로 활용된다 기존의 전파예측모델은 한국지형요소나 3차원 공간기술이 반영되지 않고 외국지형기반의 2차원적인 접근으로 개발되어 있다. 특히 많은 사람이 거주하는 아파트단지에 대해서는 고려가 되어 있지 않은 실정이며, 마치 아파트 단지가 일반 건물로 취급되어 전파환경 요소로 분류되지 않은 상태이다. 그리고 전파관리자가 기존 전파 예측모델을 이용한 무선네트워크 설계 및 운용등에 있어 정확한 의사결정지원에 어려움이 많다. 본 연구는 이러한 한계와 문제점을 해결하기 위해서 아파트 단지의 전파에 대한 영향을 3차원 공간밀집, 건물높이, 전파의 전송방향에 대한 건물배치등 3가지 요소로 분류하고 GIS 도구로 그 요소들을 분석하였다. 그 결과로 상관과 회귀분석등 정량적인 방법으로 평가하여 아파트 전파예측모델(GARP)을 개발하여 다음의 결과를 얻었다. 첫째, 아파트 단지가 UHF 대역의 전파에 대한 영향은 전파진행방향성이 57%, 공간밀집이 30%, 건물높이가 13%의 순으로 나타났다. 둘째, 본 연구에서 개발된 아파트 모델은 기존 모델에 비해 평균 6.3dBm, 최소 2.15 ~ 최대 12.48dBm의 개선 효과가 있다. 셋째, 급속히 확산되는 도시 개발에 3차원 공간상에서 전파예측모델을 시뮬레이션하여 전파의 영향을 예측할 수 있으며, 대단지 아파트 건설과 전파환경영향평가의 기초정보 수집에 활용될 수 있다. 본 연구는 GARP모델과 GIS 가시권 분석기능을 이용하여 실제 지형공간상에서 전파경로 손실치를 도시화함으로써 전파관리자가 무선서비스지역 설계, 전파음영지역 판단, 최적 중계기와 기지국 위치 선정에 기여할 것으로 판단된다.하지 않은 지역과 서로 다른 분광특성을 나타내므로 별도의 Segment를 형성하게 된다. 따라서 임상도의 경계선으로부터 획득된 Super-Object의 분광반사 값과 그 안에서 형성된 Sub-Object의 분광반사값의 차이를 이용하여 임상도의 갱신을 위한 변화지역을 탐지하였다.라서 획득한 시추코아에 대해서도 각 연구기관이 전 구간에 대해 동일하게 25%의 소유권을 가지고 있다. ?스굴 시추사업은 2008년까지 수행될 계획이며, 시추작업은 2005년까지 완료될 계획이다. 연구 진행과 관련하여, 공동연구의 명분을 높이고 분석의 효율성을 높이기 위해서 시료채취 및 기초자료 획득은 4개국의 연구원이 모여 공동으로 수행한 후의 결과물을 서로 공유하고, 자세한 전문분야 연구는 각 국의 대표기관이 독립적으로 수행하는 방식을 택하였다 ?스굴에 대한 제1차 시추작업은 2004년 3월 말에 실시하였다. 시추작업 결과, 약 80m의 시추 코아가 성공적으로 회수되어 현재 러시아 이르쿠츠크 지구화학연구소에 보관중이다. 이 시추코아는 2004년 8월 중순경에 4개국 연구팀원들에 의해 공동으로 기재된 후에 분할될 계획이다. 분할된 시료는 국내로 운반되어 다양한 전문분야별 연구에 이용될 것이다. 한편, 제2차 시추작업은 2004년 12월에서 2005년 2월 사이에 실시될 계획이다. 수백만년에 이르는 장기간에 걸쳐 지구환경변화 기록이 보존되어 있는 ?스굴호에 대한 시추사업은 후기 신생대 동안 유라시아 대륙 중부에서 일어난 지구환경 및 기후변화를 이해함과 동시에 이러한 변화가 육상생태계 및 지표지질환경에 미친 영향을 이해하는데 크게 기여할 것이다.lieve in safety with Radioactivity wastes control for harmony with Environment.d by the experiments under vari

  • PDF

Implementation of Uncertainty Processor for Tracking Vehicle Trajectory (차량 궤적 추적을 위한 불확실성 처리기 구현)

  • Kim, Jin-Suk;Kim, Dong-Ho;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.11D no.5
    • /
    • pp.1167-1176
    • /
    • 2004
  • Along the advent of Internet technology, the computing environment has been considerably changed in many application domains. Especially, a lot of researches for e-Logistics have been done for the last 3 years. The e-Logistics means the virtual business activity and service architecture among the logistics companies based on the Internet technology. To construct effectively the e-Logistics framework, researches on the development of the Moving Object Technology(MOT) including GPS and GIS with spatiotemporal databases technique so far has been done The Moving Object Technology stands for the efficient management for the spatiotemporal objects such as vehicles, airplanes, and vessels which change continuously their spatial location along with time flows. However, most systems manage just only the location information detected lately by many reasons so that the uncertainty processing for the past and future location of the moving objects is still very hard. In this paper, we propose the moving object uncertainty model and system design for e-Logistics applications. The MOMS architecture in e-Logistics is suggested and the detailed explain of sub-systems including the uncertainty processor of moving objects is described. We also explain the comprehensive examples of MOMS and uncertainty processing in Delivery Parcel Application that is one of major application of e-Logistics domain.

Production and Accuracy Analysis of Topographic Status Map Using Drone Images (드론영상을 이용한 지형 현황도 제작 및 정확도 분석)

  • Kim, Doopyo;Back, Kisuk;Kim, Sungbo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.2
    • /
    • pp.35-39
    • /
    • 2021
  • Photogrammetry using drone can produce high-resolution ortho image and acquire high-accuracy 3D information, which is useful. Therefore, this study attempted to determine the possibility of using drone-photogrammetry in park construction by producing a topographic map using drone-photogrammetry and analyzing the problems and accuracy generated during production. For this purpose, we created ortho image and DSM (digital surface model) using drone images and created topographic status map by vectorizing them. Accuracy was compared based on topographic status map by GPS (global positioning system) and TS (total station). The resulting of analyzing mean of the residuals at check points showed that 0.044 m in plane and 0.066 m in elevation, satisfying the tolerance range of 1/1,000 numerical maps, and result of compared lake size showed a difference of about 4.4%. On the other hand, it was difficult to obtain accurate height values for terrain in which existed vegetation when producing the topographic map, and in the case of underground buried objects, it is not possible to confirm it in the image, so direct spatial information acquisition was necessary. Therefore, it is judged that the topographic status map using drone photogrammetry can be efficiently constructed if direct spatial data acquisition is achieved for some terrain.

A Study on Application of Test Bed for Verification of Realistic Fire Management Technology (실감형 화재관리기술 검증을 위한 테스트베드 적용방안 연구)

  • Choi, Woo-Chul;Kim, Tae-Hoon;Youn, Joon-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.745-753
    • /
    • 2021
  • Recently, a large fire occurred in a multi-use facility used by a large number of citizens, including the vulnerable, resulting in a lot of injuries and damages. Although several pilot studies have been conducted to reduce such incidents, the development of advanced disaster response technology using the latest spatial information and IoT technology is still insufficient. In this study, a pilot test bed is built to demonstrate detailed technologies derived through the first stage of realistic fire management technology research for the development of applied technology in the field. In detail, the building conditions and candidate sites of the test bed were first investigated and analyzed to derive satisfactory conditions and candidate target buildings. A second pilot test bed was then selected, and the necessary sensor and facility infrastructure were built to demonstrate the outcomes. Finally, a scenario was produced for technology verification, and a test bed system was developed. The pilot test bed is expected to contribute to verifying intermediate outcomes of realistic fire management research projects, enhancing the quality of the developed technologies.

MR imaging of cortical activation by painful peripheral stimulation in rats (쥐에서 말초 자극에 따른 뇌피질 활성화의 자기공명 영상)

  • Lee, Bae-Hwan;Cha, Myeoung-Hoon;Cheong, Chae-Joon;Lee, Kyu-Hong;Lee, Chul-Hyun;Sohn, Jin-Hun
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.11a
    • /
    • pp.183-185
    • /
    • 2009
  • As imaging technology develops, magnetic resonance imaging (MRI) techniques have contributed to the understanding of brain function by providing anatomical structure of the brain and functional imaging related to information processing. Manganese-enhanced MRI (MEMRI) techniques can provide useful information about functions of the nervous system. However, systematic studies regarding information processing of pain have not been conducted. The purpose of this study was to detect brain activation during painful electrical stimulation using MEMRI with high spatial resolution. Male Sprague-Dawley rats (250-300 g) were divided into 3 groups: normal control, sham stimulation, and electric stimulation. Rats were anesthetized with 2.5% isoflurane for surgery. Polyethylene catheter (PE-10) was placed in the external carotid artery to administrate mannitol and MnCl2. The blood brain barrier (BBB) was broken by 20% D-mannitol under anesthesia mixed with urethane and a-chloralose. The hind limb was electrically stimulated with a 2Hz (10V) frequency while MnCl2 was infused. Brain activation induced by electrical stimulation was detected using a 4.7 T MRI. Remarkable signal enhancement was observed in the primary sensory that corresponds to sensory tactile stimulation at the hind limb region. These results suggest that signal enhancement is related to functional activation following electrical stimulation of the peripheral receptive field.

  • PDF

3-D Perspectives of Atmospheric Aerosol Optical Properties over Northeast Asia Using LIDAR on-board the CALIPSO satellite (CALIPSO위성 탑재 라이다를 이용한 동북아시아 지역의 대기 에어러솔 3차원 광학특성 분포)

  • Lee, Kwon-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.559-570
    • /
    • 2014
  • Backscatter signal observed from the space-borne Light Detection And Ranging (LIDAR) system is providing unique 3-dimensional spatial distribution as well as temporal variations for atmospheric aerosols. In this study, the continuous observations for aerosol profiles were analyzed during a years of 2012 by using a Cloud-Aerosol LIDAR with Orthogonal Polarization (CALIOP), carried on the Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The statistical analysis on the particulate extinction coefficient and depolarization ratio for each altitude was conducted according to time and space in order to estimate the variation of optical properties of aerosols over Northeast Asia ($E110^{\circ}-140^{\circ}$, $N20^{\circ}$ $-50^{\circ}$). The most frequent altitudes of aerosols are clearly identified and seasonal mean aerosol profiles vary with season. Since relatively high particle depolarization ratios (>0.5) are found during all seasons, it is considered that the non-spherical aerosols mixed with pollution are mainly exists over study area. This study forms initial regional 3-dimensional aerosol information, which will be extended and improved over time for estimation of aerosol climatology and event cases.