• Title/Summary/Keyword: 3D Solid Analysis

Search Result 420, Processing Time 0.027 seconds

Development of the Fuzzy-Based System for Stress Intensity Factor Analysis

  • Lee, Joon--Seong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.255-260
    • /
    • 2002
  • This paper describes a fuzzy-based system for analyzing the stress intensity factors (SIFs) of three-dimensional (3D) cracks. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-coded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The singular elements such that the mid-point nodes near crack front are shifted at the quarter-points, and these are automatically placed along the 3D crack front. The complete finite element(FE) model is generated, and a stress analysis is performed. The SIFs are calculated using the displacement extrapolation method. To demonstrate practical performances of the present system, semi-elliptical surface cracks in a inhomogeneous plate subjected to uniform tension are solved.

Structural Analysis of a 24 Person Elevator Emergency Brake (24인승 엘리베이터 비상 브레이크의 구조해석)

  • Lee, Jong-sun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.189-194
    • /
    • 2018
  • This study is 24 person emergency brake for the structural analysis are described. Recently emerged as a key point of the elevator safety and increase the need for an emergency brake was developed accordingly to ensure the safety of the brake tool for 3D design using Solid Works. ANSYS utilizes 24 person emergency break finite element model for total deformation, strain and stress were obtained.

A Study on Automatic Calculation of Earth-volume Using 3D Model of B-Rep Solid Structure (B-Rep Solid 구조의 3차원 모델을 이용한 토공량 자동 산정에 관한 연구)

  • Kim, Jong Nam;Um, Dae Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.5
    • /
    • pp.403-412
    • /
    • 2022
  • As the 4th industrial revolution is in full swing and next-generation ICT(Information & Communications Technology) convergence technology is being developed, various smart construction technologies are being rapidly introduced in the construction field to respond to technological changes. In particular, since the earth-volume calculation process for site design accounts for a large part of the design cost at the construction site, related researches are being actively conducted to improve the efficiency of the process and accurately calculate the earth-volume. The purpose of this study is to present a method for quickly constructing the topography of a construction site in 3D and efficiently calculating earth-volume using the results. For this purpose, the construction site was constructed as a 3D realistic model using large-scale aerial photos obtained from UAV(Unmanned Aerial Vehicle). At this time, since the constructed 3D realistic model has a surface model structure in which volume calculation is impossible, the structure was converted into a 3D solid model to enable volume calculation. And we devised a methodology to calculate earth-volume based on CAD(Computer-Aided Design and Drafting) using the converted solid model. Automatically calculating earth-volume from the solid model by applying the method. As a result, It was possible to confirm a relative deviation of 1.52% from the calculated earth-volume from the existing survey results. In addition, as a result of comparative analysis of the process time required for each method, it was confirmed that the time required is reduced of 60%. The technique presented in this study is expected to be utilized as a technology for smart construction management, such as periodic site monitoring throughout the entire construction process, as well as cost reduction for earth-volume calculation.

Decomposition-Based Simplification of Machined Part in Solid Model (볼륨분해를 이용한 절삭가공부품 솔리드 모델의 단순화)

  • Woo, Yonn-Hwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.2
    • /
    • pp.101-108
    • /
    • 2007
  • As 3D solid modeling has been widely used in designing products, solid models of the products are directly used in various applications such as engineering analysis and process planing. However, the fully-detailed solid models may not be necessary in some application. For example, it is often more efficient to use simplified model of part of engineering analysis. Generation of mesh for the complex original model requires a quite amount of time, and the consequence of finite element analysis may not be desirable due to small and detailed geometry in the model. In this paper, a method to simplify solid models of machined part is presented. This method decomposes the delta volume of machined part, and uses the decomposed volumes to simplify the solid model. Since this method directly recognizes the features to be removed from the final model, it is independent of not only design features of specific CAD system, but also designer's design practice of design sequences.

Effect of internal structures on the accuracy of 3D printed full-arch dentition preparation models in different printing systems

  • Teng Ma;Tiwu Peng;Yang Lin;Mindi Zhang;Guanghui Ren
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.3
    • /
    • pp.145-154
    • /
    • 2023
  • PURPOSE. The objective of this study was to investigate how internal structures influence the overall and marginal accuracy of full arch preparations fabricated through additive manufacturing in different printing systems. MATERIALS AND METHODS. A full-arch preparation digital model was set up with three internal designs, including solid, hollow, and grid. These were printed using three different resin printers with nine models in each group. After scanning, each data was imported into the 3D data processing software together with the master cast, aligned and trimmed, and then put into the 3D data analysis software again to compare the overall and marginal deviation whose results are expressed using root mean square values and color maps. To evaluate the trueness of the resin model, the test data and reference data were compared, and the precision was evaluated by comparing the test data sets. Color maps were observed for qualitative analysis. Data were statistically analyzed by one-way analysis of variance and Bonferroni method was used for post hoc comparison (α = .05). RESULTS. The influence of different internal structures on the accuracy of 3D printed resin models varied significantly (P < .05). Solid and grid models showed better accuracy, while the hollow model exhibited poor accuracy. The color maps show that the resin models have a tendency to shrink inwards. CONCLUSION. The internal structure design influences the accuracy of the 3D printing model, and the effect varies in different printing systems. Irrespective of the kind of printing system, the printing accuracy of hollow model was observed to be worse than those of solid and grid models.

Development of an Automation Tool for the Three-Dimensional Finite Element Analysis of Machine Tool Spindles

  • Choi, Jin-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.166-171
    • /
    • 2015
  • In this study, an automation tool was developed for rapid evaluation of machine tool spindle designs with automated three-dimensional finite element analysis (3D FEA) using solid elements. The tool performs FEA with the minimum data of point coordinates to define the section of the spindle shaft and bearing positions. Using object-oriented programming techniques, the tool was implemented in the programming environment of a CAD system to make use of its objects. Its modules were constructed with the objects to generate the geometric model and then to convert it into the FE model of 3D solid elements at the workbenches of the CAD system using the point data. Graphic user interfaces were developed to allow users to interact with the tool. This tool is helpful for identification of a near optimal design of the spindle based on, for example, stiffness with multiple design changes and then FEAs.

Free vibration analysis of damaged beams via refined models

  • Petrolo, Marco;Carrera, Erasmo;Alawami, Ali Saeghier Ali Saeed
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.1
    • /
    • pp.95-112
    • /
    • 2016
  • This paper presents the free vibration analysis of damaged beams by means of 1D (beam) advanced finite element models. The present 1D formulation stems from the Carrera Unified Formulation (CUF), and it leads to a Component-Wise (CW) modelling. By means of the CUF, any order 2D and 1D structural models can be developed in a unified and hierarchical manner, and they provide extremely accurate results with very low computational costs. The computational cost reduction in terms of total amount of DOFs ranges from 10 to 100 times less than shell and solid models, respectively. The CW provides a detailed physical description of the real structure since each component can be modelled with its material characteristics, that is, no homogenization techniques are required. Furthermore, although 1D models are exploited, the problem unknown variables can be placed on the physical surfaces of the real 3D model. No artificial surfaces or lines have to be defined to build the structural model. Global and local damages are introduced by decreasing the stiffness properties of the material in the damaged regions. The results show that the proposed 1D models can deal with damaged structures as accurately as a shell or a solid model, but with far lower computational costs. Furthermore, it is shown how the presence of damages can lead to shell-like modal shapes and torsional/bending coupling.

Stress Intensity Factor Analysis System for 3D Cracks Using Fuzzy Mesh (퍼지메쉬를 이용한 3차원 균열에 대한 응력확대계수 해석 시스템)

  • Lee, Joon-Seong;Lee, Eun-Chul;Choi, Yoon-Jong;Lee, Yang-Chang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.122-126
    • /
    • 2008
  • Integrating a 3D solid modeler with a general purpose FEM code, an automatic stress intensity factor analysis system of the 3D crack problems has been developed. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated and quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. Finally, the complete finite element(FE) model generated, and a stress analysis is performed. This paper describes the methodologies to realize such functions, and demonstrates the validity of the present system.

Photocatalytic Hydrogen Production in Water-Methanol Mixture over Iron-doped CaTiO3

  • Jang, J. S.;Borse, P. H.;Lee, J. S.;Lim, K. T.;Jung, O. S.;Jeong, E. D.;Bae, J. S.;Kim, H. G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.95-99
    • /
    • 2011
  • $CaTi_{1-x}Fe_xO_3(0{\leq}x{\leq}0.4)$ solid solution photocatalysts were synthesized by iron doping during the conventional solid state reaction at $1100^{\circ}C$ for 5 h and characterized by ultraviolet-visible (UV-vis) absorption spectroscopy, X-ray diffraction, morphological analysis. We found that $CaTi_{1-x}Fe_xO_3$ samples not only absorb UV but also the visible light photons. This is because the Fe substitution at Ti-site in $CaTi_{1-x}Fe_xO_3$ lattice induces the band transition from Fe3d to the Fe3d + Ti3d hybrid orbital. The photocatalytic activity of Fe doped $CaTiO_3$ samples for hydrogen production under UV light irradiation decreased with the increase in the Fe concentration. There exists an optimized concentration of iron in $CaTiO_3$, which yields a maximum photocatalytic activity under visible light ($\lambda\geq420nm$) photons.

Development of a System for Visualization of the Plant 3D Design Data Based on ISO 15926 (ISO 15926 기반 플랜트 3D 설계 데이터 가시화를 위한 시스템 개발)

  • Jeon, Youngjun;Kim, Byung Chul;Mun, Duhwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.2
    • /
    • pp.145-158
    • /
    • 2015
  • ISO 15926 is an international standard for the sharing and integration of plant lifecycle information. Plant design data consist of logical configuration, equipment specifications, 2D piping and instrument diagrams (P&IDs), and 3D plant models (shape data). Although 3D computer-aided design (CAD) data is very important data across the plant lifecycle, few studies on the exchange of 3D CAD data using ISO 15926 have been conducted so far. For this, we analyze information requirements regarding plant 3D design in the process industry. Based on the analysis, ISO 15926 templates are defined for the representation of constructive solid geometry (CSG) - based 3D design data. Since system environments for 3D CAD modeling and Semantic Web technologies are different from each other, we present system architecture for processing and visualizing plant 3D design data in the Web Ontology Language (OWL) format. Through the visualization test of ISO 15926-based 3D design data for equipment with a prototype system, feasibility of the proposed method is verified.