• Title/Summary/Keyword: 3D Robot Vision

Search Result 138, Processing Time 0.032 seconds

Object Recognition-based Global Localization for Mobile Robots (이동로봇의 물체인식 기반 전역적 자기위치 추정)

  • Park, Soon-Yyong;Park, Mignon;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.33-41
    • /
    • 2008
  • Based on object recognition technology, we present a new global localization method for robot navigation. For doing this, we model any indoor environment using the following visual cues with a stereo camera; view-based image features for object recognition and those 3D positions for object pose estimation. Also, we use the depth information at the horizontal centerline in image where optical axis passes through, which is similar to the data of the 2D laser range finder. Therefore, we can build a hybrid local node for a topological map that is composed of an indoor environment metric map and an object location map. Based on such modeling, we suggest a coarse-to-fine strategy for estimating the global localization of a mobile robot. The coarse pose is obtained by means of object recognition and SVD based least-squares fitting, and then its refined pose is estimated with a particle filtering algorithm. With real experiments, we show that the proposed method can be an effective vision- based global localization algorithm.

  • PDF

Optimal 3D Grasp Planning for unknown objects (임의 물체에 대한 최적 3차원 Grasp Planning)

  • 이현기;최상균;이상릉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.462-465
    • /
    • 2002
  • This paper deals with the problem of synthesis of stable and optimal grasps with unknown objects by 3-finger hand. Previous robot grasp research has analyzed mainly with either unknown objects 2D by vision sensor or unknown objects, cylindrical or hexahedral objects, 3D. Extending the previous work, in this paper we propose an algorithm to analyze grasp of unknown objects 3D by vision sensor. This is archived by two steps. The first step is to make a 3D geometrical model of unknown objects by stereo matching which is a kind of 3D computer vision technique. The second step is to find the optimal grasping points. In this step, we choose the 3-finger hand because it has the characteristic of multi-finger hand and is easy to modeling. To find the optimal grasping points, genetic algorithm is used and objective function minimizing admissible farce of finger tip applied to the object is formulated. The algorithm is verified by computer simulation by which an optimal grasping points of known objects with different angles are checked.

  • PDF

Implementation of Transformation Algorithm for a Leg-wheel Hexapod Robot Using Stereo Vision (스테레오 영상처리를 이용한 바퀴달린 6족 로봇의 형태변형 알고리즘 구현)

  • Lee, Sang-Hun;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.202-204
    • /
    • 2006
  • In this paper, the detection scheme of the spatial coordinates based on stereo camera for a Transformation algorithm of an Leg-wheel Hexapod Robot is proposed. Robot designed as can have advantages that do transfer possibility fast mobility in flat topography and uneven topography through walk that use wheel drive. In the proposed system, using the disparity data obtained from the left and right images captured by the stereo camera system and the perspective transformation between a 3-D scene and an image plane, depth information can be detected. Robot uses construed environmental data and transformation algorithm, decide wheel drive and leg waik, and can calculate width of street and regulate width of robot.

  • PDF

Vision-based Obstacle Detection using Geometric Analysis (기하학적 해석을 이용한 비전 기반의 장애물 검출)

  • Lee Jong-Shill;Lee Eung-Hyuk;Kim In-Young;Kim Sun-I.
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.3 s.309
    • /
    • pp.8-15
    • /
    • 2006
  • Obstacle detection is an important task for many mobile robot applications. The methods using stereo vision and optical flow are computationally expensive. Therefore, this paper presents a vision-based obstacle detection method using only two view images. The method uses a single passive camera and odometry, performs in real-time. The proposed method is an obstacle detection method using 3D reconstruction from taro views. Processing begins with feature extraction for each input image using Dr. Lowe's SIFT(Scale Invariant Feature Transform) and establish the correspondence of features across input images. Using extrinsic camera rotation and translation matrix which is provided by odometry, we could calculate the 3D position of these corresponding points by triangulation. The results of triangulation are partial 3D reconstruction for obstacles. The proposed method has been tested successfully on an indoor mobile robot and is able to detect obstacles at 75msec.

Development of a Transplanting Robot System for Tissue Culture Pants (II) - Machine Vision System - (조직배양체 이식로봇 시스템의 개발 (II) - 기계시각 시스템 -)

  • Lee, H. D.;Kim, K. D.;Kim, C. S.;Kim, J. P.;Jung, H.
    • Journal of Biosystems Engineering
    • /
    • v.24 no.1
    • /
    • pp.41-50
    • /
    • 1999
  • This study aims at detecting the three dimensional gripping points for the transplanting robot system to grip in the process of developing transplanting robot system, which is one of the automation systems for transplanting tissue culture. The stereo vision system equipped with two cameras has been used to detect the gripping points of the plant stem. The method for matching the plants of the image information which came from two cameras was to measure the total numbers of pixels, leaves, and the heights of the plants. The gripping points were detected near the roots after extracting the stem parts by the standard deviation of the X axis according to the Y axis. The performance test of the developed program showed that the detecting errors of the gripping points were 0∼1mm for X axis and 1∼2mm for Y & Z axis. The mean running time of the program was about 3 seconds.

  • PDF

Object Recognition Using Planar Surface Segmentation and Stereo Vision

  • Kim, Do-Wan;Kim, Sung-Il;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1920-1925
    • /
    • 2004
  • This paper describes a new method for 3D object recognition which used surface segment-based stereo vision. The position and orientation of an objects is identified accurately enabling a robot to pick up, even though the objects are multiple and partially occluded. The stereo vision is used to get the 3D information as 3D sensing, and CAD model with its post processing is used for building models. Matching is initially performed using the model and object features, and calculate roughly the object's position and orientation. Though the fine adjustment step, the accuracy of the position and orientation are improved.

  • PDF

A object tracking based robot manipulator built on fast stereo vision

  • Huang, Hua;Won, Sangchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.99.5-99
    • /
    • 2002
  • $\textbullet$ 3-D object tracking framework $\textbullet$ Using fast stereo vision system for range image $\textbullet$ Using CONDENSATION algorithm to tracking object $\textbullet$ For recognizing object, superquardrics model is used $\textbullet$ Our target object is like coils in steel works

  • PDF

Development of Multi-Laser Vision System For 3D Surface Scanning (3 차원 곡면 데이터 획득을 위한 멀티 레이져 비젼 시스템 개발)

  • Lee, J.H.;Kwon, K.Y.;Lee, H.C.;Doe, Y.C.;Choi, D.J.;Park, J.H.;Kim, D.K.;Park, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.768-772
    • /
    • 2008
  • Various scanning systems have been studied in many industrial areas to acquire a range data or to reconstruct an explicit 3D model. Currently optical technology has been used widely by virtue of noncontactness and high-accuracy. In this paper, we describe a 3D laser scanning system developped to reconstruct the 3D surface of a large-scale object such as a curved-plate of ship-hull. Our scanning system comprises of 4ch-parallel laser vision modules using a triangulation technique. For multi laser vision, calibration method based on least square technique is applied. In global scanning, an effective method without solving difficulty of matching problem among the scanning results of each camera is presented. Also minimal image processing algorithm and robot-based calibration technique are applied. A prototype had been implemented for testing.

  • PDF

Compensation of Installation Errors in a Laser Vision System and Dimensional Inspection of Automobile Chassis

  • Barkovski Igor Dunin;Samuel G.L.;Yang Seung-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.437-446
    • /
    • 2006
  • Laser vision inspection systems are becoming popular for automated inspection of manufactured components. The performance of such systems can be enhanced by improving accuracy of the hardware and robustness of the software used in the system. This paper presents a new approach for enhancing the capability of a laser vision system by applying hardware compensation and using efficient analysis software. A 3D geometrical model is developed to study and compensate for possible distortions in installation of gantry robot on which the vision system is mounted. Appropriate compensation is applied to the inspection data obtained from the laser vision system based on the parameters in 3D model. The present laser vision system is used for dimensional inspection of car chassis sub frame and lower arm assembly module. An algorithm based on simplex search techniques is used for analyzing the compensated inspection data. The details of 3D model, parameters used for compensation and the measurement data obtained from the system are presented in this paper. The details of search algorithm used for analyzing the measurement data and the results obtained are also presented in the paper. It is observed from the results that, by applying compensation and using appropriate algorithms for analyzing, the error in evaluation of the inspection data can be significantly minimized, thus reducing the risk of rejecting good parts.

Deburring of Irregular Burr using Vision and Force Sensors (비젼과 힘센서를 이용한 불균일 버의 디버링 가공)

  • Choi, G.J.;Kim, Y.W.;Shin, S.W.;Ahn, D.S.
    • Journal of Power System Engineering
    • /
    • v.2 no.3
    • /
    • pp.83-88
    • /
    • 1998
  • This paper presents an efficient control algorithm that removes irregular burrs using vision and force sensors. In automated robotic deburring, the reference force should be accommodated to the profile of burrs in order to prevent the tool breakage. In this paper, (1) The profile of burrs is recognized by vision sensor and followed by the calculation of reference force, (2) Deburring expert's skill is transferred to robot. Finally, the performance of robot is evaluated through simulation and experiment.

  • PDF