• 제목/요약/키워드: 3D Registration

검색결과 308건 처리시간 0.029초

깊이 영상의 평면 검출 기반 3차원 정합 기법을 이용한 상지 부종의 부피 측정 기술 (Volume measurement of limb edema using three dimensional registration method of depth images based on plane detection)

  • 이원희;김광기;정승현
    • 한국멀티미디어학회논문지
    • /
    • 제17권7호
    • /
    • pp.818-828
    • /
    • 2014
  • After emerging of Microsoft Kinect, the interest in three-dimensional (3D) depth image was significantly increased. Depth image data of an object can be converted to 3D coordinates by simple arithmetic calculation and then can be reconstructed as a 3D model on computer. However, because the surface coordinates can be acquired only from the front area facing Kinect, total solid which has a closed surface cannot be reconstructed. In this paper, 3D registration method for multiple Kinects was suggested, in which surface information from each Kinect was simultaneously collected and registered in real time to build 3D total solid. To unify relative coordinate system used by each Kinect, 3D perspective transform was adopted. Also, to detect control points which are necessary to generate transformation matrix, 3D randomized Hough transform was used. Once transform matrices were generated, real time 3D reconstruction of various objects was possible. To verify the usefulness of suggested method, human arms were 3D reconstructed and the volumes of them were measured by using four Kinects. This volume measuring system was developed to monitor the level of lymphedema of patients after cancer treatment and the measurement difference with medical CT was lower than 5%, expected CT reconstruction error.

3차원 스캐닝 모델과 2차원 이미지의 레지스트레이션과 텍스쳐 맵핑 (Registration of a 3D Scanned model with 2D Image and Texture Mapping)

  • 김영웅;김영일;전차수;박세형
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2003년도 춘계공동학술대회
    • /
    • pp.456-463
    • /
    • 2003
  • This paper presents a texture mapping method of a 3D scanned model with 2D images from different views. The texture mapping process consists of two steps Registration of the 3D facet model to the images by interactive points matching, and 3D texture mapping of the image pieces to the corresponding facets. In this paper. some implem entation issues and illustrative examples are described.

  • PDF

패턴드 미디어 채널에서 트랙 위치 오프셋에 따른 성능 (Performance of Read Head Offset on Patterned Media Recording Channel)

  • 김진영;이재진
    • 한국통신학회논문지
    • /
    • 제35권11C호
    • /
    • pp.896-900
    • /
    • 2010
  • 본 논문은 차세대 저장장치로 각광받고 있는 패턴드 미디어 장치에 대한 트랙 위치 오프셋에 따른 성능을 알아본다. 패턴드 미디어 채널은 SUL(Soft Underlayer)의 유무에 따라 1차원 검출기인 비터비 검출기와 2차원 검출기인 2차원 SOVA(Soft output Viterbi algorithm)를 이용해 실험하였고, 트랙 위치 오프셋이 없을 때, 10%, 20%, 30%, 40% 있을 때 실험하였다. 트랙 위치 오프셋이 10%일 때는 성능영화가 0.3 dB ~ 0.5 dB 정도로 크지 않았지만 그 이상이 되면, 성능열화가 심해지는 것을 볼 수 있다.

자기공명 영상을 이용한 피부 움직임 분석에 관한 연구 (Analysis of skin movement using MR images)

  • 류재헌;;;;이관행
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.719-722
    • /
    • 2003
  • This paper describes a novel experiment that measures the skin movement of a hand based on MR (magnetic resonance) images in conjunction with surface modeling techniques. The proposed approach consists of 3 phases: (1) MR scanning of a hand with surface makers, (2) 3D reconstruction from the MR images. and (3) registration of the 3D models. The results of registration are used to trace the skin movement with respect to underlying bone motions by measuring the positions of the surface markers.

  • PDF

Intraoral Scanner로 촬영된 치아 이미지의 정렬 (Registration of Dental Range Images from a Intraoral Scanner)

  • 고민수;박상철
    • 한국CDE학회논문집
    • /
    • 제21권3호
    • /
    • pp.296-305
    • /
    • 2016
  • This paper proposes a framework to automatically align Dental range image captured by depth sensors like the Microsoft Kinect. Aligning dental images by intraoral scanning technology is a difficult problem for applications requiring accurate model of dental-scan datasets with efficiency in computation time. The most important thing in dental scanning system is accuracy of the dental prosthesis. Previous approaches in intraoral scanning uses a Z-buffer ICP algorithm for fast registration, but it is relatively not accurate and it may cause cumulative errors. This paper proposes additional Alignment using the rough result comes after intraoral scanning alignment. It requires that Each Depth Image of the total set shares some overlap with at least one other Depth image. This research implements the automatically additional alignment system that aligns all depth images into Completed model by computing a network of pairwise registrations. The order of the each individual transformation is derived from a global network and AABB box overlap detection methods.

증강 비디오 시스템을 위한 AR 영상 Registration 알고리즘 연구 (A Study of AR Image Registration Algorithm For Augmentation Video System)

  • 김혜경;오해석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.454-456
    • /
    • 2001
  • 본 논문에서는 비디오 영상열 내에 컴퓨터가 생성한 가상의 3D 영상을 이음새 없이 추가하기 위한 문제에 초점을 맞추고 있다. 2단계의 견고한 통계적인 메소드는 추적된 커브들의 모델-영상 대응점으로부터 보다 정확한 자세를 평가하기 위하여 자세 계산을 위해 사용되었다. 또한, 관점의 정확성 향상을 위하여 두 개의 연속하는 영상들간에 매치될 수 있는 핵심점을 카메라 움직임에 대한 상관관계 함수로 사용하여 매칭 에러와 reprojection 에러를 포함한 비용함수를 최소화함에 의해 관점을 향상시킨다. 비디오 영상내 객체 영상과 가상의 3D 영상간에 발생하는 폐색 공간문제를 해결하기 위하여 반 자동 알고리즘을 제안하였다.

  • PDF

조건부 엔트로피와 3차원 볼륨 렌더링기법을 이용한 의료영상의 정합과 가시화 (Registration and Visualization of Medical Image Using Conditional Entropy and 3D Volume Rendering)

  • 김선월;조완현
    • Communications for Statistical Applications and Methods
    • /
    • 제16권2호
    • /
    • pp.277-286
    • /
    • 2009
  • 영상정합은 동일한 장면에 대해서 서로 다른 시간 혹은 특성의 센서로부터 서로 다른 위치 에서 얻는 영상들의 공간적 대응관계를 찾는 과정이다. 본 논문에서는 동일 환자에게 촬영한 뇌 MR과 CT영상간의 상이한 공간좌표계의 차이를 보정하기 위 한 강인한 정합방법을 소개한다. 두 영상의 명암도에 대한 결합 히스토그램으로부터 계산된 개선된 조건부 엔트로피(MCE: Modified Conditional Entropy)를 이용하여 최대인 위치로 정합을 수행하고, 3차원 볼륨 렌더링 기법을 이용하여 정합된 영상을 가시화한다.

Effectual Method FOR 3D Rebuilding From Diverse Images

  • Leung, Carlos Wai Yin;Hons, B.E.
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 한국정보컨버전스학회 2008년도 International conference on information convergence
    • /
    • pp.145-150
    • /
    • 2008
  • This thesis explores the problem of reconstructing a three-dimensional(3D) scene given a set of images or image sequences of the scene. It describes efficient methods for the 3D reconstruction of static and dynamic scenes from stereo images, stereo image sequences, and images captured from multiple viewpoints. Novel methods for image-based and volumetric modelling approaches to 3D reconstruction are presented, with an emphasis on the development of efficient algorithm which produce high quality and accurate reconstructions. For image-based 3D reconstruction a novel energy minimisation scheme, Iterated Dynamic Programming, is presented for the efficient computation of strong local minima of discontinuity preserving energyy functions. Coupled with a novel morphological decomposition method and subregioning schemes for the efficient computation of a narrowband matching cost volume. the minimisation framework is applied to solve problems in stereo matching, stereo-temporal reconstruction, motion estimation, 2D image registration and 3D image registration. This thesis establishes Iterated Dynamic Programming as an efficient and effective energy minimisation scheme suitable for computer vision problems which involve finding correspondences across images. For 3D reconstruction from multiple view images with arbitrary camera placement, a novel volumetric modelling technique, Embedded Voxel Colouring, is presented that efficiently embeds all reconstructions of a 3D scene into a single output in a single scan of the volumetric space under exact visibility. An adaptive thresholding framework is also introduced for the computation of the optimal set of thresholds to obtain high quality 3D reconstructions. This thesis establishes the Embedded Voxel Colouring framework as a fast, efficient and effective method for 3D reconstruction from multiple view images.

  • PDF

A novel method for testing accuracy of bite registration using intraoral scanners

  • Lydia Kakali;Demetrios J. Halazonetis
    • 대한치과교정학회지
    • /
    • 제53권4호
    • /
    • pp.254-263
    • /
    • 2023
  • Objective: The evidence on the accuracy of bite registration using intraoral scanners is sparse. This study aimed to develop a new method for evaluating bite registration accuracy using intraoral scanners. Methods: Two different types of models were used; 10 stone models and 10 with acrylic resin teeth. A triangular frame with cylindrical posts at each apex (one anterior and two posteriors) was digitally designed and manufactured using three-dimensional (3D) printing. Such a structure was fitted in the lingual space of each maxillary and mandibular model so that, in occlusion, the posts would contact their opposing counterparts, enforcing a small interocclusal gap between the two arches. This ensured no tooth interference and full contact between opposing posts. Bite registration accuracy was evaluated by measuring the distance between opposing posts, with small values indicating high-accuracy. Three intraoral scanners were used: Medit i500, Primescan, and Trios 4. Viewbox software was used to measure the distance between opposing posts and compute roll and pitch. Results: The average maximum error in interocclusal registration exceeded 50 ㎛. Roll and pitch orientation errors ranged above 0.1 degrees, implying an additional interocclusal error of around 40 ㎛ or more. The models with acrylic teeth exhibited higher errors. Conclusions: A method that avoids the need for reference hardware and the imprecision of locating reference points on tooth surfaces, and offers simplicity in the assessment of bite registration with an intraoral scanner, was developed. These results suggest that intraoral scanners may exhibit clinically significant errors in reproducing the interocclusal relationships.