• Title/Summary/Keyword: 3D Reactor Kinetics

Search Result 27, Processing Time 0.034 seconds

Research of KNPEC-2 Simulator Upgrade(I) (원자력 교육원 #2 시뮬레이션 성능개선에 관한 연구(I))

  • 유현주
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.249-252
    • /
    • 2000
  • 원자력 교육원 #2(KNPEC-2) 시뮬레이터는 1980년도 중반에 웨스팅하우스에 의해 공급되어 계속 사용되어 오다가 현재 성능개선 연구가 진행 중이다. 이번 성능개선을 통해 기존의 컴퓨터 시스템(Gould MPX)와 소프트웨어의 전면 교체가 이루어지고 있으며 최적 계산 코드를 이용한 실시간 열수력 모델 (ARTS; Advanced Real-Time Thermal-Hydraulics Simulation) 개발 , 2-Group 3D 실시간 노심모델(REMARK ; REal Time Multigroup Advanced Reactor Kinetics)를 이용한 노심 주기개선 (Cycle Update) 가상현실 기술 등을 이용한 컴퓨터 교육지원 시스템(CATS: Computer Assister Training System)등 새로운 시도가 이루어지고 있으며 본 논문은 이러한 새로운 시도가 이루어지고 있으며 본 논문은 이러한 새로운 시도들 및 그 결과에 대해 기술하고 있다. 기준발전소(Reference Plant)인 영광 1호기 12주기의 노심모델로 주기개선(Cycle Update)을 위한 REMARK의 입력자료 생성을 위해 핵설계 전산체계인 APA(ALPHA-PHOENIX-ANC) 시스템의 출력으로부터 자동으로 REMARK 입력데이타를 생성하기 위한 GUI툴 개발하였다. 또 이를 이용하여 개발된 노심모델은 최적계산코드(RETRAn 3D) 의 열수력 해법을 이용하여 개발된 NSSS 열수력코드(ARTS) 와 결합(Integration) 되어 안정 및 과도 상태 시험에 사용되었으며 원자로 냉각재 펌프 정지등의 몇 가지 과도 시험 계산결과 기존 해석 결과와 잘 일치하였다 중앙제어실(MCR; Main Control Room)내의 운전원 행동만 훈련하도록 되어있는 기존시뮬레이터의 한계를 극복하기 위해 가상현실 (VR) 저작도구를 이용한 발전소 현장 내부를 표현하는 가상발전소 (Virtual Plant) 발전소 현장에 소재하여 기존 시뮬레이터의 모의한계 밖에 있던 패널을 표현한 가상판넬(Virtual Panel)등과 강의실에서 발전소 모의 훈련을 가능케 하기 위해 가상현실 기술을 이용한 컴퓨터 지원 교육훈력 시스템(CATS ; Computer Assister Training System)을 개발 중이며 일부 개발부분을 소개하였다.

  • PDF

Characteristics of Anaerobic Degradation on Dewatered Liquid of Household Food Waste. (음식물쓰레기 탈수액의 혐기성 생분해 특성)

  • Kim, Woo-Sung;Seo, Jeoung-Yoon;Lee, Young-Hyeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.3
    • /
    • pp.234-238
    • /
    • 1998
  • Anaerobic degradation characteristics of dewatered liquid of household food waste including methane conversion efficiency and degradation kinetics were studied in an anaerobic batch reactor of 5 L volume. The ultimate methane production for dewatered liquid of household food waste tested was over 0.31L $CH_4/L{\cdot}dewatered$ liquid of household food waste. The kinetic constant of dewatered liquid of household food waste tested was $0.223d^{-1}/L$. The kinetic behavior of anaerobic degradation was described as a first order series reaction. The determinant of rate-limiting step(DR) that is balanced out from the rates of reaction steps was defined by the logarithmic difference of the maximum acidification rate and the maximum methanation rate. Anaerobic degradation characteristics of organic materials were evaluated by the value of DR. The DR of dewatered liquid of household food waste tested was 1.17.

  • PDF

Gasification Kinetics of an Indonesian Subbituminous Coal Char Reactivity with $CO_2$at Elevated Pressure (가압하에서 인도네시아 아역청탄촤의 $CO_2$ 가스화 반응성에 관한 실헙적 연구)

  • 안달홍;고경호;이종민;주용진;김종진
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.206-213
    • /
    • 2001
  • Gasification kinetics of an Indonesian sub-bituminous coal-char with $CO_2$at elevated pressure was investigated with a pressurised drop tube furnace reactor. The effects of reaction temperature (900~140$0^{\circ}C$), partial pressure of carbon dioxide (0.1~0.5 MPa), and total system pressure (0.5, 0.7, 1.0, 1.5MPa) on gasification rate of the coal char with $CO_2$have been determined. It was found that the gasification rate was dependent on the total system pressure with the same partial pressure and temperature. The $n^{th}$ order rate equation (R=k $P^{g}$ $_{asn}$) was modified to be R=k $P^{g}$ $_{asn}$ $P^{m}$ $_{total}$ to describe the gasification rate where the total system pressure was changed. The gasification reaction rate of char-$CO_2$at high temperature and elevated pressure may be expressed as dX/dt=(174.1)exp(-71.5/RT)( $P_{CO2}$)0.40( $P_{total}$ )0.65(1-X)$^{2}$ 3/.X> 3/.

  • PDF

Characteristics on the Removal of Emulsified Vegetable Oil in Wastewater using Bio logical Fluidized Bed (생물학적(生物學的) 유동층(流動層)을 이용(利用)한 수중(水中)의 식물성유(植物性油) 제거특성(除去特性))

  • Kim, Hwan Gi;Park, Ro Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.127-136
    • /
    • 1990
  • In this paper, the experimental study was carried out for the removal of olive oil in wastewater by the use of Biological Fluidized Bed(BFB) with the reticulated polypropylene sheets as media. The nonbiodegradable olive oil, one of the animal and vegitable oil, was used bacause of the relative simplicity of constitution. Biological degraciability and removal characteristics of emulsified olive oil were studied by batch and continuous experiments respectively. From the results of batch experiments, it was observed that the emulsified olive oli used in BFB reactor was absorbed by media and sludge in about 12 hours, and degradation of the absorbed olive oli was mostly completed for 24 hours. The functional relationship of Michaelis-Menten's Enzyme reaction equation exists between oil concentration and maximum specific rate of olive oil. From the continuous experiments for the removal of olive oil using BFB reactor, it was proved that the substrate removal rate coefficient $k=0.004d^{-1}$, which is the first order kinetics. It was apperared that oxygen utlization coefficients for synthesis(a') and endogeneous respiration(b') of microorganisms in the reactor are respectively 0.85mg $O_2/mg$ $COD_{cr}$ and 0.011mg $O_2/mg$ BVS. day.

  • PDF

A Kinetic Study of Allylchloride Epoxidation using Titanium Silicalite-1 Catalyst (Titanium Silicalite-1 촉매를 이용한 Allylchloride 에폭시화 반응: 속도론적 고찰)

  • Yang, Seung-Tae;Choi, Jung-Sik;Kwon, Young-Chul;Lee, Sang-Wook;Ahn, Wha-Seung
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.142-146
    • /
    • 2008
  • Titanium silicalite-1 catalyst was prepared using a $SiO_2-TiO_2$ xerogel and applied to allylchloride (ALC) epoxidation by $H_2O_2$ as oxidant in a batch reactor. The reaction temperature was varied from 25 to $55^{\circ}C$, and the concentrations of ALC and $H_2O_2$ were changed from 0.2 to 3 M and from 0.2 to 1.5 M, respectively. The kinetic data obtained were applied to the power rate law, Eley-Rideal, and a Langmuir-Hinshelwood model, and power rate law fits the experimental data best. Activation energy was 27.9 kJ/mol, and the reaction orders with respect to $H_2O_2$ and ALC were determined to be 0.41 and 0.52, respectively.

Steam Gasification of Coal and Petroleum Coke in a Thermobalance and a Fluidized Bed Reactor (열천칭과 유동층반응기에서 석탄과 Petroleum Coke의 수증기 가스화반응)

  • Ji, Keunho;Song, Byungho
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1015-1020
    • /
    • 2012
  • Lignite of low rank coal and petroleum coke of high sulfur content can be high potential energy sources for coal gasification process because of their plentiful supply. The steam gasification of lignite, anthracite, and pet coke has been carried out in both an atmospheric thermobalance reactor and a lab-scale fludized bed reactor (0.02 m i.d. ${\times}$ 0.6 m height). The effects of gasification temperature ($600{\sim}900^{\circ}C$) and partial pressure of steam (0.15~0.95 atm) on the gasification rate and on the heating value of product gas have been investigated. The modified volumetric reaction model was applied to the experimental data to describe the behavior of carbon conversion, and to evaluate kinetic parameters of char gasification. The results shows that higher temperature bring more hydrogen in the product syngas, and thus increased gas heating value. The feed rate of steam is needed to be optimized because an excess steam input would lower the gasification temperature which results in a degradation of fuel quality. The rank of calorific value of the product gas was anthracite > lignite > pet coke. Their obtained calorific value at $900^{\circ}C$ with 95% steam feed were 10.0 > 6.9 > 5.7 $MJ/m^3$. This study indicates that lignite and pet coke has a potential in fuel gas production.

High Temperature Application of Iron Removal Chemical Cleaning Solvent in the Secondary Side of Nuclear Steam Generators (증기발생기 2차측 제철화학세정액의 고온적용)

  • Hur, D.H.;Lee, E.H.;Chung, H.S.;Kim, U.C.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.140-148
    • /
    • 1994
  • A qualification test was performed for the iron removal chemical cleaning of the secondary side of nuclear steam generators at the selected temperature, 1$25^{\circ}C$, higher than the standard application temperature, 93$^{\circ}C$. The field cleaning condition for a nuclear unit was tested in a bench scale test loop including a SUS 316 stainless steel autoclave with one gallon capacity as a test vessel. The kinetics of sludge dissolution, corrosion of the secondary side materials and change of solvent chemistry were monitored. Test results indicated that more thorough cleaning was accomplished in less than half of the cleaning time required at 93$^{\circ}C$. And the total corrosions of the secondary side materials were found to be less than the values at 93$^{\circ}C$. While the solvent is recirculated and heated by an external chemical cleaning equipment for the conventional 93$^{\circ}C$ process, the secondary side is heated by the lateral heat of the primary coolant without the recirculation of the cleaning solution, and the solvent is mixed by vigorous boiling induced by periodic ventilation for the high temperature process. The requirement that the reactor coolant pumps should be running during the cleaning operation is the major disadvantage of the high temperature process which also should be considered when chemical cleaning is planned for steam generators under operation.

  • PDF