• Title/Summary/Keyword: 3D Reactor Kinetics

Search Result 27, Processing Time 0.044 seconds

Reaction Characteristics and Kinetics for Treatment of Wastewater Containing Phenol (Phenol 함유 폐수의 처리를 위한 반응 특성과 속도론)

  • Kang, Sun-Tae;Kim, Jeong-Mog
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.3
    • /
    • pp.124-130
    • /
    • 1997
  • Wastewater containing phenol was treated using Pseudomonas sp. B3 in continuous reactor, reaction characteristics and kinetics according to variation of volumetric loading rate in continuous reactor were studied. The removal efficiencies of phenol were more than 99% at the whole range of experiment, and those of COD were 97% at the volumetric loading rate, $0.96kg/m^3{\cdot}d$ and 88% at $3.0kg/m^3{\cdot}d$, respectively. Kinetics constants of $q_m$, $K_s$, Y and $K_d$ were obtained 0.901 l/d, 0.620mg/l, 0.659 and 0.219 l/d, respectively. As compared with to constants of standard activated sludge process, these constants were remarkably different because of toxicity and inhibition of phenol to microbes. And also, kinetics constants of oxygen utilization, a, and b, were shown 0.384 kg $O_2/kg$ phenol and 0.029 l/d.

  • PDF

Reactivity feedback effect on loss of flow accident in PWR

  • Foad, Basma;Abdel-Latif, Salwa H.;Takeda, Toshikazu
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1277-1288
    • /
    • 2018
  • In this work, the reactor kinetics capability is used to compute the design safety parameters in a PWR due to complete loss of coolant flow during protected and unprotected accidents. A thermal-hydraulic code coupled with a point reactor kinetic model are used for these calculations; where kinetics parameters have been developed from the neutronic SRAC code to provide inputs to RELAP5-3D code to calculate parameters related to safety and guarantee that they meet the regulatory requirements. In RELAP5-3D the reactivity feedback is computed by both separable and tabular models. The results show the importance of the reactivity feedback on calculating the power which is the key parameter that controls the clad and fuel temperatures to maintain them below their melting point and therefore prevent core melt. In addition, extending modeling capability from separable to tabular model has nonremarkable influence on calculated safety parameters.

Application of Coupled Reactor Kinetics Method to a CANDU Reactor Kinetics Problem.

  • Kim, Hyun-Dae-;Yeom, Choong-Sub;Park, Kyung-Seok-
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.11a
    • /
    • pp.141-145
    • /
    • 1994
  • A computer code for solving the 3-D time-dependent multigroup neutron diffusion equation by a coupled reactor kinetics method recently developed has been developed and for evaluating its applicability in CANDU transient analysis applied to a 3-D kinetics benchmark problem which reveals non-uniform loss of coolant accident followed by an asymmetric insertion of shutdown devices. The performance of the method and code has been compared with the CANDU design code, CERBERUS, employing a finite difference improved quasistatic method.

  • PDF

HOT CHANNEL ANALYSIS CAPABILITY OF THE BEST-ESTIMATE MULTI-DIMENSIONAL SYSTEM CODE, MARS 3.0

  • JEONG J.-J.;BAE S. W.;HWANG D. H.;LEE W. J.;CHUNG B. D.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.469-478
    • /
    • 2005
  • The subchannel analysis capability of MARS, a multi-dimensional thermal-hydraulic system code, has been enhanced. In particular, the turbulent mixing and void drift models for the flow-mixing phenomena in rod bundles were improved. Then, the subchannel analysis feature was combined with the existing coupled system thermal-hydraulics (T/H) and 3D reactor kinetics calculation capability of MARS. These features allow for more realistic simulations of both the hot channel behavior and the global system T/H behavior. Using the coupled features of MARS, a coupled analysis of a main steam line break (MSLB) is carried out for demonstration purposes. The results of the calculations are very reasonable and promising.

Development of a 3D thermohydraulic-neutronic coupling model for accident analysis in research miniature neutron source reactor (MNSR)

  • Ahmadi, M.;Rabiee, A.;Pirouzmand, A.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1776-1783
    • /
    • 2019
  • To accurately analyze the accidents in nuclear reactors, a thermohydraulic-neutronic coupling calculation is required to solve fluid dynamics and nuclear reactor kinetics equations in fine cells simultaneously and evaluate the local effects of neutronic and thermohydraulic parameters on each other. In the present study, a 3D thermohydraulic-neutronic coupling model is developed, validated and then applied for Isfahan MNSR (Miniature Neutron Source reactor) safety analysis. The proposed model is developed using FLUENT software and user defined functions (UDF) are applied to simulate the neutronic behavior of MNSR. The validation of the proposed model is first evaluated using 1mk reactivity insertion experiment into Isfahan MNSR core. Then, the developed coupling code is applied for a design basis accident (DBA) scenario analysis with the insertion of maximum allowed cold core reactivity of 4 mk. The results show that the proposed model is able to predict the behavior of the reactor core under normal and accident conditions with a good accuracy.

KINETICS OF AUTOTROPHIC DENITRIFICATION FOR THE BIOFILM FORMED ON SULFUR PARTICLES : Evaluation of Molecular Technique on Monitoring Biomass Growth

  • Kim, Sung-Youn;Jang, Am;Kim, I-Tae;Kim, Kwang-Soo;Kim, In-S.
    • Environmental Engineering Research
    • /
    • v.10 no.6
    • /
    • pp.283-293
    • /
    • 2005
  • Characteristics of sulfur-based autotrophic denitrification in a semi-continuous type reactor and the kinetic parameters were studied. Enriched autotrophic denitrifying culture was used for the reactor operation. Biomass growth on sulfur particles and in the liquid medium was monitored using the DAPI staining method. From the result of ion concentration changes and the biomass growth, maximum specific growth rate, ${\mu}_{max}$, and the half velocity constant, $K_M$, were estimated as $0.61\;d^{-1}$ and 3.66 mg/L, respectively. Growth yield coefficient, Y values for electron acceptor and donor were found as 0.49 gVSS/g N and 0.16 gVSS/g S. The biomass showed specific denitrification rate, ranging 0.86-1.13 gN/g VSS-d. A half-order equation was found to best simulate the denitrification process in the packed bed reactor operated in the semi-continuous mode.

Analysis of LBLOCA of APR1400 with 3D RPV model using TRACE

  • Yunseok Lee;Youngjae Lee;Ae Ju Chung;Taewan Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1651-1664
    • /
    • 2023
  • It is very difficult to capture the multi-dimensional phenomena such as asymmetric flow and temperature distributions with the one-dimensional (1D) model, obviously, due to its inherent limitation. In order to overcome such a limitation of the 1D representation, many state-of-the-art system codes have equipped a three-dimensional (3D) component for multi-dimensional analysis capability. In this study, a standard multi-dimensional analysis model of APR1400 (Advanced Power Reactor 1400) has been developed using TRACE (TRAC/RELAP Advanced Computational Engine). The entire reactor pressure vessel (RPV) of APR1400 has been modeled using a single 3D component. The fuels in the reactor core have been described with detailed and coarse representations, respectively, to figure out the impact of the fuel description. Using both 3D RPV models, a comparative analysis has been performed postulating a double-ended guillotine break at a cold leg. Based on the results of comparative analysis, it is revealed that both models show no significant difference in general plant behavior and the model with coarse fuel model could be used for faster transient analysis without reactor kinetics coupling. The analysis indicates that the asymmetric temperature and flow distributions are captured during the transient, and such nonuniform distributions contribute to asymmetric quenching behaviors during blowdown and reflood phases. Such asymmetries are directly connected to the figure of merits in the LBLOCA analysis. Therefore, it is recommended to employ a multi-dimensional RPV model with a detailed fuel description for a realistic safety analysis with the consideration of the spatial configuration of the reactor core.

A Systems Engineering Approach to Multi-Physics Analysis of CEA Ejection Accident

  • Sebastian Grzegorz Dzien;Aya Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.46-58
    • /
    • 2023
  • Deterministic safety analysis is a crucial part of safety assessment, particularly when it comes to demonstrating the safety of nuclear power plant designs. The traditional approach to deterministic safety analysis models is to model the nuclear core using point kinetics. However, this simplified approach does not fully reflect the real core behavior with proper moderator and fuel reactivity feedbacks during the transient. The use of Multi-Physics approach allows more precise simulation reflecting the inherent three-dimensionality (3D) of the problem by representing the detailed 3D core, with instantaneous updates of feedback mechanisms due to changes of important reactivity parameters like fuel temperature coefficient (FTC) and moderator temperature coefficient (MTC). This paper addresses a CEA ejection accident at hot full power (HFP), in which the underlying strong and un-symmetric feedback between thermal-hydraulics and reactor kinetics exist. For this purpose, a multi-physics analysis tool has been selected with the nodal kinetics code, 3DKIN, implicitly coupled to the thermal-hydraulic code, RELAP5, for real-time communication and data exchange. This coupled approach enables high fidelity three-dimensional simulation and is therefore especially relevant to reactivity initiated accident (RIA) scenarios and power distribution anomalies with strong feedback mechanisms and/or un-symmetrical characteristics as in the CEA ejection accident. The Systems Engineering approach is employed to provide guidance in developing the work in a systematic and efficient fashion.

An Experimental and Modeling Study on the Oxidation Kinetics of Nitric Oxide over Platinum-based Catalysts (백금계 촉매상에서 산화질소(NO)의 산화반응속도에 관한 실험 및 모델링 연구)

  • Kim, Young-Deuk;Jeong, Soo-Jin;Kim, Woo-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.71-80
    • /
    • 2012
  • To improve the $NO_X$ conversion over a SCR (selective catalytic reduction) catalyst, the DOC (diesel oxidation catalyst) is usually placed upstream of the SCR catalyst to enhance the fast SCR reaction ($4NH_3+2NO+2NO_2{\rightarrow}4N_2+6H_2O$) using equimolar amounts of NO and $NO_2$. Here, a ratio of $NO_2/NO_X$ above 50% should be avoided, because the reaction with $NO_2$ only ($4NH_3+4NO+O_2{\rightarrow}4N_2+6H_2O$) is slower than the standard SCR reaction ($4NH_3+4NO+O_2{\rightarrow}4N_2+6H_2O$). In order to accurately predict the performance characteristics of SCR catalysts, it is therefore desired to develop a more simple and reliable mathematical and kinetic models on the oxidation kinetics of nitric oxide over a DOC. In the present work, the prediction accuracy and limit of three different chemical reaction kinetics models are presented to describe the chemicophysical characteristics and conversion performance of DOCs. Steady-state experiments with DOCs mounted on a light-duty four-cylinder 2.0-L turbocharged diesel engine then are performed, using an engine-dynamometer system to calibrate the kinetic parameters such as activation energies and preexponential factors of heterogeneous reactions. The reaction kinetics for NO oxidation over Pt-based catalysts is determined in conjunction with a transient one-dimensional (1D) heterogeneous plug flow reactor (PFR) model with diesel exhaust gas temperatures in the range of 115~$525^{\circ}C$ and space velocities in the range of $(0.4{\sim}6.5){\times}10^5\;h^{-1}$.