• Title/Summary/Keyword: 3D QSAR

Search Result 132, Processing Time 0.026 seconds

Toward Proper 3D-QSAR Datasets for Parameter Evaluation

  • Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.4 no.3
    • /
    • pp.197-201
    • /
    • 2011
  • 3D-QSAR techniques including CoMFA have been used a lot for more than two decades now. For now, the perspective of 3D-QSAR has been changed. The realization of gorge activity cliffs and higher chance correlation with many independent variables (IVs) has changed the requirements. Some suggested the benchmarking datasets for 3D-QSAR. However, were they still useful for right reasons? Here, we propose the requirement of any general purpose 3D-QSAR benchmarking datasets for lead optimization, especially for feasibility test of any IVs. Specifically, we summarize the conceptual requirements for an ideal settings for 3D-QSAR especially CoMFA.

2D-QSAR and HQSAR Analysis on the Herbicidal Activity of New Cyclohexanedione Derivatives (새로운 Cyclohexanedione계 유도체의 제초활성에 관한 2D-QSAR 및 HQSAR 분석)

  • Kim, Yong-Chul; Hwang, Tae-Yeon;Sung, Nack-Do
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.1
    • /
    • pp.9-17
    • /
    • 2008
  • QSARs (Quantitative structure-activity relationships) between a series of new cyclohexanedione derivatives (5-benzofuryl-2-[1-(alkoxyimino)-alkyl]-3-hydroxycyclohex-2-en-1-ones) and their herbicidal activity against Rice plant (Oryza sativa L.) and Barnyard grass (Echinochloa crus-galli.) were discussed quantitatively using 2D-QSAR and holographic (H) QSAR methods. Generally, the HQSAR models have better predictability and fitness than the 2D-QSAR models. The herbicidal activities against Barnyard grass with 2D-QSAR II model were dependent upon Balaban indice (BI) of molecule and hydrophobicity of $R_1$ and $R_3$ group. And also, the $R_3=ethyl$ group, according to the information of the optimized HQSAR IV model, was more contribute to the herbicidal activities against Rice plant, while the 5-(cyclohex-3-enyl)-2,3-dihydrobenzofuran ring part was not contribute to the herbicidal activities against two plants.

Development of new agrochemicals by quantitative structure-activity relationship (QSAR) methodology. III. 3D QSAR methodologies and computer-assisted molecular design (CAMD) (정량적인 구조-활성상관 (QSAR) 기법에 의한 새로운 농약의 개발. III. 3D QSAR 기법들과 컴퓨터를 이용한 분자설계(CAMD))

  • Sung, Nack-Do
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.1
    • /
    • pp.1-11
    • /
    • 2003
  • Acoording to improvement of HTOS (high throughput organic synthesis) and HTS (high throughput screening) technique, the CoMFA (comparative molecular field analysis), CoMSIA (comparative molecular similarity indeces analysis) and molecular HQSAR (hologram quantitative structure-activity relationship) analysis techniques as methodology of computer assisted molecular design (CAMD) were introduced generally and summarized for some application cases.

A Review of 3D-QSAR in Drug Design

  • Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • Quantitative structure-activity relationship (QSAR) methodologies have been applied for many years, to correlate the relationship between physicochemical properties of chemical substances and their biological activities to generate a statistical model for prediction of the activities of new chemical entities. The basic principle behind the QSAR models is that, how structural variation is responsible for the difference in biological activities of the compounds. 3D-QSAR has emerged as a natural extension to the classical Hansch and Free-Wilson approaches, which develops the 3D properties of the ligands to predict their biological activities using various chemometric techniques (PLS, G/PLS, ANN etc). It has served as a valuable predictive tool in the design of pharmaceuticals and agrochemicals. This review seeks to provide different 3D-QSAR approaches involved in drug designing process to develop structure-activity relationships and also discussed the fundamental limitations, as well as those that might be overcome with the improved methodologies.

Development of New Agrochemicals by Quantitative Structure-Activity Relationship (QSAR) Methodology -IV. A Tendency of Research and Prospect in Korea- (정량적인 구조-활성상관(QSAR) 기법에 의한 새로운 농약의 개발 -IV. 국내의 연구 동향과 전망-)

  • Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.46 no.3
    • /
    • pp.155-164
    • /
    • 2003
  • It was reviewed for the status of domestic research before and after 1990's for search of a new pesticides using 2D QSAR of quantitative structure-activity relationship (QSAR) methodologies (Sung, Nack-Do (2002) Development of new agrochemicals by quantitative structure-activity relationship (QSAR) methodology. Kor J. Pestic. Sci. 6, 166-174, 231-243 & 7, 1-11) which was proposed according to Hansch-Fujita equation based on the concept of biological Hammett equation.

Development of new agrochemicals by quantitative structure-activity relationship (QSAR) methodologies. I. The basic concepts and types of QSAR methodologies (정량적인 구조-활성상관(QSAR) 기법에 의한 새로운 농약의 개발 I. 기본 개념과 QSAR 기법의 유형)

  • Sung, Nack-Do
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.3
    • /
    • pp.166-174
    • /
    • 2002
  • The fundamental concepts on the basis of linear free energy relationship (LFER), history of development, prediction of pharmacological effects, advantages and disadvantages, etc. according to the 2D and 3D QSAR methodologies were summarized in utilizing the quantitative structure-activity relation ship (QSAR) techniques for searching and development of new agrochemicals. Objectives, role of QSAR techniques in development process of pesticides and limitations in QSARs were discussed and introduced.

Molecular Docking, 3D QSAR and Designing of New Quinazolinone Analogues as DHFR Inhibitors

  • Yamini, L.;Kumari, K. Meena;Vijjulatha, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2433-2442
    • /
    • 2011
  • The three dimensional quantitative structure activity relationship (3D QSAR) models were developed using Comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA) and docking studies. The fit of Quinazolinone antifolates inside the active site of modeled bovine dihydrofolate reductase (DHFR) was assessed. Both ligand based (LB) and receptor based (RB) QSAR models were generated, these models showed good internal and external statistical reliability that is evident from the $q^2_{loo}$, $r^2_{ncv}$ and $r^2_{pred}$. The identified key features enabled us to design new Quinazolinone analogues as DHFR inhibitors. This study is a building bridge between docking studies of homology modeled bovine DHFR protein as well as ligand and target based 3D QSAR techniques of CoMFA and CoMSIA approaches.

3D QSAR Studies on New Piperazine Derivatives with Antihistamine and Antibradykinin Effects

  • Parkchoo, Hea-Young;Chung, Bum-Jun
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.324-328
    • /
    • 2000
  • Three dimensional QSAR studies for antihistamine and antibradykinin effects of new piperazine derivatives were conducted using the comparative molecular field analysis. Electrostatic and steric factors, but not hydrophobic factor, of the synthesized compounds were correlated with the antagonistic effect.

  • PDF

3D-QSAR Studies of 3,5-disubstituted Quinolines Inhibitors of c-Jun N-terminal Kinase-3

  • Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.4 no.3
    • /
    • pp.216-221
    • /
    • 2011
  • c-Jun N-terminal kinase-3 (JNK-3) has been shown to mediate neuronal apoptosis and make the promising therapeutic target for neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and other CNS disorders. In order to better understand the structural and chemical features of JNK-3, comparative molecular field analysis (CoMFA) was performed on a series of 3,5-disubstituted quinolines derivatives. The best predictions were obtained CoMFA model ($q^2$=0.707, $r^2$=0.972) and the statistical parameters from the generated 3D-QSAR models were indicated that the data are well fitted and have high predictive ability. The resulting contour map from 3D-QSAR models might be helpful to design novel and more potent JNK3 derivatives.

Design of Novel JNK3 Inhibitors Based on 3D-QSAR In Silico Model

  • Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.5 no.1
    • /
    • pp.6-12
    • /
    • 2012
  • c-Jun N-terminal kinase-3 (JNK-3) has been identified as a promising target for neuronal apoptosis and has the effective therapeutic for neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and other CNS disorders. Herein, we report the essential structural and chemical parameters for JNK-3 inhibitors utilizing comparative molecular field similarity indices analysis (CoMSIA) using the derivatives of 3,5-disubstituted quinolines. The best predictions were obtained CoMSIA model (q2=0.834, r2=0.987) and the statistical parameters from the generated 3D-QSAR models were indicated that the data are well fitted and have high predictive ability. The resulting contour map from 3D-QSAR models might be helpful to design novel and more potent JNK3 derivatives.