• 제목/요약/키워드: 3D Prototypes

검색결과 102건 처리시간 0.026초

보급형 3D 프린터를 활용한 착용형 패션 프로토타입 개발 (Development of Wearable Fashion Prototypes Using Entry-Level 3D Printers)

  • 전재훈
    • 한국의류학회지
    • /
    • 제41권3호
    • /
    • pp.468-486
    • /
    • 2017
  • In this study, three kinds of wearable fashion prototypes were developed using 3D printers with the goal of developing a practical production method for daily clothes. Prototypes were modeled using Rhinoceros software and developed using FDM 3D printers and TPU filaments. The results of this study are as follows. First, it confirmed the possibility of FDM-type entry-level 3D printers as a tool to develop wearable fashion products. Second, TPU filaments that are soft and ductile are highly likely to be used as a clothing material. Third, patterns designed through the 3D modeling process can be sampled directly to a 3D printer and easily corrected and supplemented. Fourth, it was confirmed that TPU prints of about 1.00mm thickness can be sewn with fabric using sewing machines through the development of 'Prototype 1' and 'Prototype 2'; in addition, hand stitching is also possible. Fifth, as in the case of 'Prototype 3', it is possible to fabricate a garment fit enough to the body if the clothing configuration is designed to connect the basic module using TPU filaments. In the future, the development of wearable fashion prototypes using various materials and 3D printing technology will help diversify everyday clothes.

Accuracy of maxillofacial prototypes fabricated by different 3-dimensional printing technologies using multi-slice and cone-beam computed tomography

  • Yousefi, Faezeh;Shokri, Abbas;Farhadian, Maryam;Vafaei, Fariborz;Forutan, Fereshte
    • Imaging Science in Dentistry
    • /
    • 제51권1호
    • /
    • pp.41-47
    • /
    • 2021
  • Purpose: This study aimed to compare the accuracy of 3-dimensional(3D) printed models derived from multidetector computed tomography (MDCT) and cone-beam computed tomography (CBCT) systems with different fields of view (FOVs). Materials and Methods: Five human dry mandibles were used to assess the accuracy of reconstructions of anatomical landmarks, bone defects, and intra-socket dimensions by 3D printers. The measurements were made on dry mandibles using a digital caliper (gold standard). The mandibles then underwent MDCT imaging. In addition, CBCT images were obtained using Cranex 3D and NewTom 3G scanners with 2 different FOVs. The images were transferred to two 3D printers, and the digital light processing (DLP) and fused deposition modeling (FDM) techniques were used to fabricate the 3D models, respectively. The same measurements were also made on the fabricated prototypes. The values measured on the 3D models were compared with the actual values, and the differences were analyzed using the paired t-test. Results: The landmarks measured on prototypes fabricated using the FDM and DLP techniques based on all 4 imaging systems showed differences from the gold standard. No significant differences were noted between the FDM and DLP techniques. Conclusion: The 3D printers were reliable systems for maxillofacial reconstruction. In this study, scanners with smaller voxels had the highest precision, and the DLP printer showed higher accuracy in reconstructing the maxillofacial landmarks. It seemed that 3D reconstructions of the anterior region were overestimated, while the reconstructions of intra-socket dimensions and implant holes were slightly underestimated.

3D 프린팅에서 자동차용 Inner ring의 내부밀도에 따른 치수 특성 (Dimensional Characteristics according to Internal Density of Automotive Inner Ring in 3D Printing)

  • 김해지;김남경
    • 한국기계가공학회지
    • /
    • 제18권11호
    • /
    • pp.96-102
    • /
    • 2019
  • Reverse engineering involves duplicating a physical part by measuring and analyzing its physical dimensions, features, and material properties. By combining reverse engineering with three-dimensional (3D) printing, engineers can simply fabricate and evaluate functional prototypes. This design methodology has been attracting increasing interest with the advent of the Fourth Industrial Revolution. In the present study, we apply reverse engineering and 3D printing technologies to evaluate a fabricated automotive inner ring prototype. Through 3D printing, inner rings of various densities were prepared. Their physical dimensions were measured with a 3D scanning system. Of our interest was the effect of inner ring density on the physical dimensions of the fabricated prototype. We compared the design dimensions and physical dimensions of the fabricated prototypes. The results revealed that even the 20% density of inner ring was effective for 3D printing in terms of satisfying the design requirements.

R/P 마스터 모델을 활용한 정밀주조 부품 및 쾌속금형 제작 공정기술의 개발 (Development of Rapid Tooling using Investment Casting & R/P Master Model)

  • 정해도;김화영
    • 한국주조공학회지
    • /
    • 제20권5호
    • /
    • pp.330-335
    • /
    • 2000
  • Functional metal prototypes are often required in numerous industrial applications. These components are typically needed in the early stage of a project to determine form, fit and function. Recent R/P(Rapid Prototyping) part are made of soft materials such as plastics, wax, paper, these master models cannot be employed durable test in real harsh working environment. Parts by direct metal rapid tooling method, such as laser sintering, by now are hard to get net shape, pores of the green parts of powder casting method must be infiltrated to get proper strength as tool, and new type of 3D direct tooling system combining fabrication welding arc and cutting process is reported. But a system which can build directly 3D parts of high performance functional material as metal park would get long period of system development, massive investment and other serious obstacles, such as patent. In this paper, through the rapid tooling process as silicon rubber molding using R/P master model, and fabricate wax pattern in that silicon rubber mold using vacuum casting method, then we translated the wax patterns to numerous metal tool prototypes by new investment casting process combined conventional investment casting with rapid prototyping & rapid tooling process. With this wax-injection-mold-free investment casting, we developed new investment casting process of fabricating numerous functional metal prototypes from one master model, combined 3-D CAD, R/P and conventional investment casting and tried to expect net shape measuring total dimension shrinkage from R/P pare to metal part.

  • PDF

발포폴리스티렌 폼을 이용한 단속형 가변적층 쾌속조형공정과 응용기술을 이용한 3차원 기능성 제품 제작에 관한 연구 (Investigation Into the Manufacture of 3D Functional Parts using VLM-ST and Its Applied Technology)

  • 안동규;이상호;최홍석;김기돈;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.190-194
    • /
    • 2001
  • The integration of rapid prototyping and tooling has the potential for the rapid net shape manufacturing of three-dimensional parts with geometrical complexity. In this study, a new rapid prototyping process, transfer type of Variable Lamination Manufacturing (VLM-ST), was proposed to manufacture net shape of 3-D prototypes. In order to examine the efficiency and applicability of the proposed process, various 3-D parts, such as a world-cup logo, and extruded cross and a knob shape, were fabricated on the apparatus. In addition, the new rapid tooling process, which is a triple reverse process, was proposed to manufacture of 3-D functional part using VLM-ST prototypes and the plastic part of the knob shape was produced by the new rapid tooling process.

  • PDF

$VLM-_{ST}$ 공정과 삼단역전 쾌속 툴링 공정을 이용한 3차원 제품 정형가공에 관한 연구 (Three-Dimensional Net Shaping Combining $VLM-_{ST}$ and the Triple Reverse Rapid Tooling)

  • 안동규;이상호;양동열
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.428-432
    • /
    • 2003
  • The technical combination of RP and RT has a potential for rapid manufacturing of three-dimensional parts. In the present work a new RP system, $VLM-_{ST}$, is proposed to manufacture net shapes of 3D prototypes. ㅁ human head shape and a kob shape are manufactured by the $VLM-_{ST}$ apparatus. In addition, a new RT technology, which utilizes a RTV molding technique and a triple reverse process technique, is proposed to manufacture net shapes of 3D plastic parts using prototypes of $VLM-_{ST}$. A plastic part of the knob shape os produced by the proposed RT technology. The combination of the proposed RP and RT enables the manufacturing of a plastic knob within two days.

  • PDF

캐드 교육을 위한 YUKA와 CLO의 패턴 제도 기능 비교: 스커트패턴을 중심으로 (Comparison of Pattern Design Functions in YUKA and CLO for CAD Education: Focusing on Skirt Patterns)

  • 최영림
    • 한국의류산업학회지
    • /
    • 제26권1호
    • /
    • pp.65-77
    • /
    • 2024
  • This study aimed to propose effective ways to integrate CLO into educational settings by conducting a comparative analysis of pattern functions in YUKA and CLO, specifically focusing on skirt prototypes and variations. CLO, being a 3D virtual sample CAD tool, is mainly used in education to facilitate the creation of 3D virtual clothing. In order to explore the applicability of CLO's pattern functions in pattern education, CAD education experts were asked to produce two types of skirt prototypes and two skirt variations. Subsequently, in-depth interviews were conducted. In addition, the skirt pattern creation process was recorded on video and used for comparative analysis of YUKA and CLO pattern functions. The comparison revealed that CLO provides the pattern tools necessary for drafting skirt prototypes. The learning curve for acquiring the skills necessary for drafting and transforming skirt prototypes was found to be relatively shorter for CLO compared to YUKA. In addition, due to CLO's surface-based pattern drawing method, it is difficult to move or copy only specific parts of the outline, and there are some limitations in drawing right angle lines. In the pattern transformation process, CLO's preview function proved to be advantageous, and it was highly rated on user convenience due to the intuitive UI. Thus, CLO shows promise for pattern drafting education and is deemed to have high scalability as it is directly linked to 3D virtual clothing.

레이저 3D 프린팅 기법으로 제작한 열교환기 성능시험 분석 연구 (Experimental analysis of heat exchanger performance produced by laser 3D printing technique)

  • 김무선
    • 한국산학기술학회논문지
    • /
    • 제21권7호
    • /
    • pp.270-276
    • /
    • 2020
  • 3D 프린팅은 고분자, 세라믹, 금속 등 다양한 소재를 대상으로 복합적인 형상을 한 번의 공정으로 제작할 수 있는 적층 기반 제작 기술이다. 최근의 3D 프린팅 기술은 프린팅 속도의 향상과 적용 가능 소재의 지속적인 개발에 의해 양산형 제품 생산이 가능한 수준으로 발전하였다. 본 연구에서는 레이저를 활용한 3D 프린팅 기술을 적용하여 철도 차량용 공기 압축기에 쓰이는 열교환기 제작을 진행하였다. 먼저 3D 프린팅에 적합한 형상으로 경량화 및 컴팩트화를 주안점으로 열교환기의 최적 설계를 진행하였다. 그로부터 도출된 설계안을 기반으로 SLM 기법을 적용하여 AlSi10Mg 합금 소재로 열교환기 시작품을 제작하였다. 다음으로, 제작된 시작품을 기존 공기 압축기에 부착하여, 압축공기의 열교환 성능을 시험하였다. 3D 프린팅 시작품의 시험 결과는 기존 열교환기 대비하여 저압부와 고압부에서 열교환 성능은 각각 약 80% 및 85% 수준을 보였다, 하지만 외부 냉각공기 조건을 기존 열교환기와 유사한 조건으로 가정하였을 때 𝓔-NTU 법을 활용하여 계산한 열전달량은 기존 열교환기 대비하여 유사한 성능을 보여 주었다. 결과적으로, 3D 프린팅 제작 열교환기의 성능 효과 및 경량화 등의 장점을 확인할 수 있었다.

플립칩 접합용 초음파 혼의 목표 주파수와 모드를 고려한 2차원 및 3차원 위상최적화 설계 (2D and 3D Topology Optimization with Target Frequency and Modes of Ultrasonic Horn for Flip-chip Bonding)

  • 하창용;이수일
    • 한국소음진동공학회논문집
    • /
    • 제23권1호
    • /
    • pp.84-91
    • /
    • 2013
  • Ultrasonic flip-chip bonding needs a precise bonding tool which delivers ultrasonic energy into chip bumps effectively to use the selected resonance mode and frequency of the horn structure. The bonding tool is excited at the resonance frequency and the input and output ports should locate at the anti-nodal points of the resonance mode. In this study, we propose new design method with topology optimization for ultrasonic bonding tools. The SIMP(solid isotropic material with penalization) method is used to formulate topology optimization and OC(optimal criteria) algorithm is adopted for the update scheme. MAC(modal assurance criterion) tracking is used for the target frequency and mode. We fabricate two prototypes of ultrasonic tools which are based on 3D optimization models after reviewing 2D and 3D topology optimization results. The prototypes are satisfied with the ultrasonic frequency and vibration amplitude as the ultrasonic bonding tools.

단속형 가변적층 쾌속조형공정과 쾌속툴링 기술을 이용한 쾌속 3차원 기능성 제품 개발에 관한 연구 (Study on Rapid Manufacturing of 3D Functional Parts Combining VLM-ST Process and Its RT Technology)

  • 안동규;이상호;김기돈;양동열
    • 소성∙가공
    • /
    • 제11권4호
    • /
    • pp.323-331
    • /
    • 2002
  • The combination of rapid prototyping(RP) and rapid tooling(RT) has a potential for rapid manufacturing of three-dimensional parts. In the present study, a new RP system transfer type Variable Lamination Manufacturing using Expandable Polystyrene Foam (VLM-ST), is proposed to fabricate net shapes of three-dimensional prototypes. Various three-dimensional parts, such as a knob shape and a human head shape, are manufactured by the VLM-ST apparatus. In addition, a new rapid tooling technology, which utilizes a room temperature vulcanizing (RTV) molding technique and a triple reverse process technique, is proposed to manufacture net shapes of three-dimensional plastic parts using the prototypes of VLM-ST. A plastic part of the knob shape is produced by the proposed RT technology. The combination of the proposed RP and RT enables the manufacture of a plastic knob within two days.