• 제목/요약/키워드: 3D Printed Electronics

검색결과 79건 처리시간 0.025초

연성 인쇄 회로를 이용한 광대역 Marchand 발룬 (Wideband Marchand Balun Using Flexible Printed Circuit)

  • 이선호;주성호;이해영
    • 한국전자파학회논문지
    • /
    • 제18권2호
    • /
    • pp.111-117
    • /
    • 2007
  • 본 논문에서는 기능성 연결부에 대한 응용으로, 연성 인쇄 회로의 조건에서 광역 결합 CPW 구조를 이용한 광대역 Marchand 발룬을 제작 측정하였다. 제안된 발룬은 결합 선로 이론을 바탕으로 설계, 기존의 마이크로스트립 라인 구조의 발룬과 비교하여 작은 크기로 향상된 특성을 나타냈다. 측정 결과 72 %의 넓은 대역폭을 갖고, 가용 주파수 내($1.63{\sim}3.44$ GHz)에서 삽입 손실의 차이와 위상 차이는 각각 0.2 dB, $1^{\circ}$ 이내로 나타났다. 따라서 제안된 발룬은 안테나와 RF 전단부의 연결부로 사용되어 전체적인 성능 향상에 기여할 것으로 기대된다.

RAM용 경질다층 PCB의 신뢰성 평가기준 (Reliability Assessment Criteria of Rigid Multi-layer PCB for RAM)

  • 홍원식;송병석;백재욱;정해성
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제9권3호
    • /
    • pp.259-274
    • /
    • 2009
  • Printed circuit boards for RAM are widely used in modern electronics such as computers, artificial satellites and consumer durables. They are exposed to a very diverse environment and consists of many complicated components and therefore needs careful approach to the enhancement and assessment of reliability of the item. In this article reliability standards for PCBs for RAM are established in terms of quality certification tests and failure rate tests.

  • PDF

이중 대역 동작을 위한 변형 스파이럴 모노폴 인쇄형 안테나 설계 (Design of Modified Spiral Monopole Printed Antenna for Dual Band Operation)

  • 정새한솔;정진우;임영석
    • 한국전자파학회논문지
    • /
    • 제21권9호
    • /
    • pp.933-939
    • /
    • 2010
  • 본 논문에서는 GPS(1.57~1.577 GHz)와 WiBro(2.3~2.4 GHz), WLAN(2.4~2.48 GHz)에서 이중 대역 동작하는 변형 스파이럴 모노폴 인쇄형 안테나를 설계 제작하였다. 이중 대역 동작하는 안테나 설계 시 필요한 주파수비를 자유롭게 조절하기 위해, 기본 공진 주파수와 3배수 하모닉 공진 주파수의 전류 분포가 다름을 이용하여 스파이럴 내부 선로의 간격을 다르게 하고 브랜치 라인을 삽입하였다. 측정 대역폭은 기본 공진 주파수에서 140 MHz(1.47~1.61 GHz), 3배수 하모닉 공진 주파수에서 420 MHz(2.29~2.71 GHz)로 나타났다. 최대 방사 이득은 GPS(1.575 GHz) 대역에서 2.825 dBi, WiBro(2.35 GHz) 대역에서 3.65 dBi, 그리고 WLAN(2.45 GHz) 대역에서 4.564 dBi로 측정되었다.

3차원 프린터의 출력 볼륨보다 큰 물체를 출력하기 위한 인터랙티브 3차원 메쉬 편집 시스템 (An Interactive 3D Mesh Editing System for Printing Object Larger Than the Printing Volume of 3D Printer)

  • 추창우;김갑기;박창준;최진성
    • 한국멀티미디어학회논문지
    • /
    • 제19권8호
    • /
    • pp.1619-1625
    • /
    • 2016
  • Recently, as the public interests about the 3D printing technology are increased, various kinds of 3D printers are being released. But, they are limited to use because they cannot fabricate an object which is larger than the printer's printing volume. To relieve this problem, we propose an interactive 3D mesh editing system for 3D printing the object that is larger than the printing volume. The proposed 3D editing system divides the input 3D mesh using the user's line drawings defining cutting planes and it attaches various connectors. The output meshes are guaranteed to fabricate without post-processing. The printed parts can be assembled using the connectors. Our proposed system has an advantage that it can be used easily by non-professional 3D printer users.

인쇄전자 기술을 이용한 유기 태양전지 기술 개발 (Development of the Organic Solar Cell Technology using Printed Electronics)

  • 김정수;유종수;윤성만;조정대;김동수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.113.1-113.1
    • /
    • 2011
  • PEMS (printed electro-mechanical system) is fabricated by means of various printing technologies. Passive and active compo-nents in 2D or 3D such as conducting lines, resistors, capacitors, inductors and TFT(Thin Film Transistor), which are printed withfunctional materials, can be classified in this category. And the issue of PEMS is applied to a R2R process in the manu-facturing process. In many electro-devices, the vacuum process is used as the manufacturing process. However, the vacuum process has a problem, it is difficult to apply to a continuous process such as a R2R(roll to roll) printing process. In this paper, we propose an ESD (electro static deposition) printing process has been used to apply an organic solar cell of thin film forming. ESD is a method of liquid atomization by electrical forces, an electrostatic atomizer sprays micro-drops from the solution injected into the capillary with electrostatic force generated by electric potential of about several tens kV. ESD method is usable in the thin film coating process of organic materials and continuous process as a R2R manufacturing process. Therefore, we experiment the thin films forming of PEDOT:PSS layer and active layer which consist of the P3HT:PCBM. The organic solar cell based on a P3HT/PCBM active layer and a PEDOT:PSS electron blocking layer prepared from ESD method shows solar-to-electrical conversion efficiency of 1.42% at AM 1.5G 1sun light illumination, while 1.86% efficiency is observed when the ESD deposition of P3HT/PCBM is performed on a spin-coated PEDOT:PSS layer.

  • PDF

Development of Three-Dimensional Deformable Flexible Printed Circuit Boards Using Ag Flake-Based Conductors and Thermoplastic Polyamide Substrates

  • Aram Lee;Minji Kang;Do Young Kim;Hee Yoon Jang;Ji-Won Park;Tae-Wook Kim;Jae-Min Hong;Seoung-Ki Lee
    • 한국전기전자재료학회논문지
    • /
    • 제37권4호
    • /
    • pp.420-426
    • /
    • 2024
  • This study proposes an innovative methodology for developing flexible printed circuit boards (FPCBs) capable of conforming to three-dimensional shapes, meeting the increasing demand for electronic circuits in diverse and complex product designs. By integrating a traditional flat plate-based fabrication process with a subsequent three-dimensional thermal deformation technique, we have successfully demonstrated an FPCB that maintains stable electrical characteristics despite significant shape deformations. Using a modified polyimide substrate along with Ag flake-based conductive ink, we identified optimized process variables that enable substrate thermal deformation at lower temperatures (~130℃) and enhance the stretchability of the conductive ink (ε ~30%). The application of this novel FPCB in a prototype 3D-shaped sensor device, incorporating photosensors and temperature sensors, illustrates its potential for creating multifunctional, shape-adaptable electronic devices. The sensor can detect external light sources and measure ambient temperature, demonstrating stable operation even after transitioning from a planar to a three-dimensional configuration. This research lays the foundation for next-generation FPCBs that can be seamlessly integrated into various products, ushering in a new era of electronic device design and functionality.

Realistic Head Phantom for Evaluation of Brain Stroke Localization Methods Using 3D Printer

  • Lee, Juneseok;Bang, Jihoon;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • 제16권4호
    • /
    • pp.254-258
    • /
    • 2016
  • In this paper, a brain phantom for evaluating brain stroke localization is proposed. To evaluate brain stroke localization, a phantom imitating three-dimensional (3D) simulation environment is needed. Mold for the proposed phantom was printed by a 3D printer and the interior of the phantom consists of 5 different brain tissue materials. Each of the brain tissue materials has the conductivity and permittivity similar to those of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) standards for a frequency band from 0.5 to 2 GHz.

Ultra Wide-Band용 타원형 모노폴 안테나 설계 (Design of the Elliptic Monopole Antenna for Ultra Wide-Band)

  • 차상진;이현진;임영석
    • 한국전자파학회:학술대회논문집
    • /
    • 한국전자파학회 2003년도 종합학술발표회 논문집 Vol.13 No.1
    • /
    • pp.442-445
    • /
    • 2003
  • The use of a single UWB antenna which covers a wide range of frequencies is very desirable for future wireless communications system. In this paper, we propose a novel wide band printed elliptic monopole antenna for UWB(Ultra wide Band). Wideband planar monopole disc antenna have been recently studied. The proposed antenna can cover UWB frequencies from 3.5GHz to 12GHz. it is determined from 10dB return loss. The antenna consists of the printed elliptical monopole disc with microstrip-line feed. Elliptic disc of antenna and ground height operate important to matching. The results of measurement are almost similar to those of simulation.

  • PDF

삼차원 프린트된 몰드와 액체 금속을 이용한 웨어러블 힘 센서 개발 (Wearable Force Sensor Using 3D-printed Mold and Liquid Metal)

  • 김규영;최중락;정용록;김민성;김승환;박인규
    • 센서학회지
    • /
    • 제28권3호
    • /
    • pp.198-204
    • /
    • 2019
  • In this study, we propose a wearable force sensor using 3D printed mold and liquid metal. Liquid metal, such as Galinstan, is one of the promising functional materials in stretchable electronics known for its intrinsic mechanical and electronic properties. The proposed soft force sensor measures the external force by the resistance change caused by the cross-sectional area change. Fused deposition modeling-based 3D printing is a simple and cost-effective fabrication of resilient elastomers using liquid metal. Using a 3D printed microchannel mold, 3D multichannel Galinstan microchannels were fabricated with a serpentine structure for signal stability because it is important to maintain the sensitivity of the sensor even in various mechanical deformations. We performed various electro-mechanical tests for performance characterization and verified the signal stability while stretching and bending. The proposed sensor exhibited good signal stability under 100% longitudinal strain, and the resistance change ranged within 5% of the initial value. We attached the proposed sensor on the finger joint and evaluated the signal change during various finger movements and the application of external forces.