• 제목/요약/키워드: 3D Pose Estimation

검색결과 155건 처리시간 0.021초

스킵 연결 형태 기반의 손 관절 2D 및 3D 검출 기법 (2D and 3D Hand Pose Estimation Based on Skip Connection Form)

  • 구종회;김미경;차의영
    • 한국정보통신학회논문지
    • /
    • 제24권12호
    • /
    • pp.1574-1580
    • /
    • 2020
  • 기존의 신체 인식 방법은 특수한 기기를 사용하거나 이미지로부터 영상처리를 통해 검출하는 방법들이 있다. 특수 기기를 사용할 경우 기기를 사용할 수 있는 환경이 제약되고 기기의 비용이 많이 든다는 단점이 있다. 카메라와 영상처리를 사용할 경우 환경의 제약과 비용이 낮아지는 장점이 있지만, 성능이 떨어진다. 이런 단점을 해결하기 위해 카메라와 합성 곱 심층 신경망을 사용한 신체 인식 방법들이 연구되었다. 합성 곱 심층 신경망의 성능을 올리기 위해 다양한 기법들이 제안되었다. 본 논문에서는 합성 곱 심층 신경망의 성능을 올리기 위한 기법 중 스킵 연결을 다양한 형태로 사용하여 스킵 연결이 손 검출 망에 끼치는 영향을 실험하였다. 실험을 통해 기본 스킵 연결 이외 추가적인 스킵 연결의 존재가 성능에 나은 영향을 끼치고 하향 스킵 연결만 추가된 망이 가장 나은 성능을 보임을 확인하였다.

3D 스켈레톤을 이용한 3D 포인트 클라우드의 캘리브레이션 (A New Calibration of 3D Point Cloud using 3D Skeleton)

  • 박병서;강지원;이솔;박정탁;최장환;김동욱;서영호
    • 방송공학회논문지
    • /
    • 제26권3호
    • /
    • pp.247-257
    • /
    • 2021
  • 본 논문에서는 3D(dimensional) 스켈레톤을 이용하여 다시점 RGB-D 카메라를 캘리브레이션 하는 새로운 기법을 제안하고자 한다. 다시점 카메라를 캘리브레이션 하기 위해서는 일관성 있는 특징점이 필요하다. 또한 높은 정확도의 캘리브레이션 결과를 얻기 위해서는 정확한 특징점의 획득이 필요하다. 우리는 다시점 카메라를 캘리브레이션 하기 위한 특징점으로 사람의 스켈레톤을 사용한다. 사람의 스켈레톤은 최신의 자세 추정(pose estimation) 알고리즘들을 이용하여 쉽게 구할 수 있게 되었다. 우리는 자세 추정 알고리즘을 통해서 획득된 3D 스켈레톤의 관절 좌표를 특징점으로 사용하는 RGB-D 기반의 캘리브레이션 알고리즘을 제안한다. 다시점 카메라에 촬영된 인체 정보는 불완전할 수 있기 때문에, 이를 통해 획득된 영상 정보를 바탕으로 예측된 스켈레톤은 불완전할 수 있다. 불완전한 다수의 스켈레톤을 효율적으로 하나의 스켈레톤으로 통합한 후에, 통합된 스켈레톤을 이용하여 카메라 변환 행렬을 구함으로써 다시점 카메라들을 캘리브레이션 할 수 있다. 캘리브레이션의 정확도를 높이기 위해서 시간적인 반복을 통해서 다수의 스켈레톤을 최적화에 이용한다. 우리는 실험을 통해서 불완전한 다수의 스켈레톤을 이용하여 다시점 카메라를 캘리브레이션 할 수 있음을 증명한다.

휴먼 헤드포즈 정보를 이용한 3차원 공간 내 응시점 추정 (Estimation of a Gaze Point in 3D Coordinates using Human Head Pose)

  • 신채림;윤상석
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.177-179
    • /
    • 2021
  • 본 논문은 실내 공간에서 상호작용 로봇이 사용자의 시선이 응시하는 목표지점의 위치정보를 추정하는 방법을 제안한다. 저가의 웹캠으로부터 RGB 영상을 추출하고, 얼굴검출(Openface)모듈로부터 사용자의 헤드포즈 정보를 획득한 후 기하학적 연산을 적용하여 3차원 공간 내 사용자의 응시방향을 추정하게 된다. 추정된 응시방향과 테이블 상의 평면과의 상관관계를 통하여 최종적으로 사용자가 응시하는 목표 지점의 좌표를 추정하게 된다.

  • PDF

가상 객체 합성을 위한 단일 프레임에서의 안정된 카메라 자세 추정 (Reliable Camera Pose Estimation from a Single Frame with Applications for Virtual Object Insertion)

  • 박종승;이범종
    • 정보처리학회논문지B
    • /
    • 제13B권5호
    • /
    • pp.499-506
    • /
    • 2006
  • 본 논문에서는 실시간 증강현실 시스템에서의 가상 객체 삽입을 위한 빠르고 안정된 카메라 자세 추정 방법을 제안한다. 단일 프레임에서 마커의 특징점 추출을 통해 카메라의 회전행렬과 이동벡터를 추정한다. 카메라 자세 추정을 위해 정사영 투영모델에서의 분해기법을 사용한다. 정사영 투영모델에서의 분해기법은 객체의 모든 특징점의 깊이좌표가 동일하다고 가정하기 때문에 깊이좌표의 기준이 되는 참조점의 설정과 점의 분포에 따라 카메라 자세 계산의 정확도가 달라진다. 본 논문에서는 실제 환경에서 일반적으로 잘 동작하고 융통성 있는 참조점 설정 방법과 이상점 제거 방법을 제안한다. 제안된 카메라 자세추정 방법에 기반하여 탐색된 마커 위치에 가상객체를 삽입하기 위한 비디오 증강 시스템을 구현하였다. 실 환경에서의 다양한 비디오에 대한 실험 결과, 제안된 카메라 자세 추정 기법은 기존의 자세추정 기법만큼 빠르고 기존의 방법보다 안정적이고 다양한 증강현실 시스템 응용에 적용될 수 있음을 보여주었다.

Evidence gathering for line based recognition by real plane

  • 이재규;류문욱;이장원
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.195-199
    • /
    • 2008
  • We present an approach to detect real plane for line base recognition and pose estimation Given 3D line segments, we set up reference plane for each line pair and measure the normal distance from the end point to the reference plane. And then, normal distances are measured between remains of line endpoints and reference plane to decide whether these lines are coplanar with respect to the reference plane. After we conduct this coplanarity test, we initiate visibility test using z-buffer value to prune out ambiguous planes from reference planes. We applied this algorithm to real images, and the results are found useful for evidence fusion and probabilistic verification to assist the line based recognition as well as 3D pose estimation.

  • PDF

학습을 이용한 손 자세의 강인한 추정 (Robust Estimation of Hand Poses Based on Learning)

  • 김설호;장석우;김계영
    • 한국정보통신학회논문지
    • /
    • 제23권12호
    • /
    • pp.1528-1534
    • /
    • 2019
  • 최근 들어, 3차원의 깊이 카메라의 대중화로 인해서 RGB 영상에서 수행되던 연구에 새로운 관심과 기회가 생겼지만 사람의 손 자세의 추정은 여전히 어려운 주제 중의 하나로 분류되고 있다. 본 논문에서는 다양하게 입력되는 3차원의 깊이 영상으로부터 사람의 손의 자세를 학습 알고리즘을 이용하여 강인하게 추정하는 방법을 제안한다. 제안된 접근 방법에서는 먼저 뼈대 기반의 손 모델을 생성한 다음, 생성된 손 모델을 3차원의 포인트 클라우드 데이터에 정렬한다. 그런 다음, 랜덤 포레스트 기반의 학습 알고리즘을 이용하여 정렬된 손 모델로부터 손의 자세를 강인하게 추정한다. 본 논문의 실험 결과에서는 제안된 접근 방법이 다양한 실내외의 환경에서 촬영된 입력 영상으로부터 사람의 손의 자세를 강인하고 빠르게 추정한다는 것을 보여준다.

자동차 프런트 샤시 모듈의 좌표 해석 (Dimensional Analysis for the Front Chassis Module in the Auto Industry)

  • 이동목;양승한
    • 한국정밀공학회지
    • /
    • 제21권8호
    • /
    • pp.50-56
    • /
    • 2004
  • The directional ability of an automobile has an influence on driver directly, and hence it must be given most priority. Alignment factors of automobile such as the camber, caster and toe directly affect the directional ability of a vehicle. The above mentioned factors are determined by the pose of interlinks in the assembly of an automobile front chassis module. Measuring the position of center point of ball joints in the front lower arm is very difficult. A method to determine this position is suggested in this paper. Pose estimation for front chassis module and dimensional evaluation to find the rotational characteristics of front lower arm were developed based on fundamental geometric techniques. To interpret the inspection data obtained for front chassis module, 3-D best fit method is needed. The best fit method determines the relationship between the nominal design coordinate system and the corresponding feature coordinate system. The least squares method based on singular value decomposition is used in this paper.

3차원 직선을 이용한 카메라 모션 추정 (Motion Estimation Using 3-D Straight Lines)

  • 이진한;장국현;서일홍
    • 로봇학회논문지
    • /
    • 제11권4호
    • /
    • pp.300-309
    • /
    • 2016
  • This paper proposes a method for motion estimation of consecutive cameras using 3-D straight lines. The motion estimation algorithm uses two non-parallel 3-D line correspondences to quickly establish an initial guess for the relative pose of adjacent frames, which requires less correspondences than that of current approaches requiring three correspondences when using 3-D points or 3-D planes. The estimated motion is further refined by a nonlinear optimization technique with inlier correspondences for higher accuracy. Since there is no dominant line representation in 3-D space, we simulate two line representations, which can be thought as mainly adopted methods in the field, and verify one as the best choice from the simulation results. We also propose a simple but effective 3-D line fitting algorithm considering the fact that the variance arises in the projective directions thus can be reduced to 2-D fitting problem. We provide experimental results of the proposed motion estimation system comparing with state-of-the-art algorithms using an open benchmark dataset.

이동로봇의 물체인식 기반 전역적 자기위치 추정 (Object Recognition-based Global Localization for Mobile Robots)

  • 박순용;박민용;박성기
    • 로봇학회논문지
    • /
    • 제3권1호
    • /
    • pp.33-41
    • /
    • 2008
  • Based on object recognition technology, we present a new global localization method for robot navigation. For doing this, we model any indoor environment using the following visual cues with a stereo camera; view-based image features for object recognition and those 3D positions for object pose estimation. Also, we use the depth information at the horizontal centerline in image where optical axis passes through, which is similar to the data of the 2D laser range finder. Therefore, we can build a hybrid local node for a topological map that is composed of an indoor environment metric map and an object location map. Based on such modeling, we suggest a coarse-to-fine strategy for estimating the global localization of a mobile robot. The coarse pose is obtained by means of object recognition and SVD based least-squares fitting, and then its refined pose is estimated with a particle filtering algorithm. With real experiments, we show that the proposed method can be an effective vision- based global localization algorithm.

  • PDF

포즈 변형을 이용한 포인트 클라우드 압축 (Point Clouds Compression Using Pose Deformation)

  • 이솔;박병서;박정탁;서영호
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 하계학술대회
    • /
    • pp.47-48
    • /
    • 2021
  • 본 논문에서는 대용량의 3D 데이터 시퀀스의 압축을 진행한다. 3D 데이터 시퀀스의 각 프레임에서 Pose Estimation을 통해 3D Skeleton을 추출한 뒤, 포인트 클라우드를 skeleton에 묶는 리깅 과정을 거치고, 다음 프레임과 같은 자세로 deformation을 진행한다. 다음 프레임과 같은 자세로 변형된 포인트 클라우드와 실제 다음 프레임의 포인트 클라우드를 비교하여, 두 데이터에 모두 있는 점, 실제 다음 프레임에만 있는 점, deformation한 데이터에만 있는 점으로 분류한다. 두 데이터에 모두 있는 점을 제외하고 나머지 두 분류의 점들을 저장함으로써 3D 시퀀스 데이터를 압축할 수 있다.

  • PDF