• Title/Summary/Keyword: 3D Point Data

Search Result 1,128, Processing Time 0.031 seconds

A Study on the Changes in the Physical Environment of Resources in Rural Areas Using UAV -Focusing on Resources in Galsan-Myeon, Hongseong-gun- (무인항공기를 활용한 농촌 지역자원의 물리적 환경변화 분석연구 - 홍성군 갈산면 지역자원을 중심으로 -)

  • An, Phil-Gyun;Kim, Sang-Bum;Cho, Suk-Yeong;Eom, Seong-Jun;Kim, Young-Gyun;Cho, Han-Sol
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.23 no.4
    • /
    • pp.1-12
    • /
    • 2021
  • Recently, the use of unmanned aerial vehicles (UAVs) is increasing in the field of land information acquisition and terrain exploration through high-altitude aerial photography. High-altitude aerial photography is suitable for large-scale geographic information collection, but has the disadvantage that it is difficult to accurately collect small-scale geographic information. Therefore, this study used low-altitude UAV to monitor changes in small rural spaces around rural resources, and the results are as follows. First, the low-altitude aerial imagery had a very high spatial resolution, so it was effective in reading and analyzing topographic features. Second, an area with a large number of aerial images and a complex topography had a large amount of point clouds to be extracted, and the number of point clouds affects the three-dimensional quality of rural space. Third, 3D mapping technology using point cloud is effective for monitoring rural space and rural resources because it enables observation and comparison of parts that cannot be read from general aerial images. In this study, the possibility of rural space analysis of low-altitude UAV was verified through aerial photography and analysis, and the effect of 3D mapping on rural space monitoring was visually analyzed. If data acquired by low-altitude UAV are used in various forms such as GIS analysis and topographic map production it is expected to be used as basic data for rural planning to maintain and preserve the rural environment.

A Study on Flash Points and Fire Points of Acids Using Closed Cup and Open-cup Apparatus (밀폐식과 개방식 장치를 이용한 Acid류의 인화점과 연소점에 관한 연구)

  • Ha, Dong-Myeong;Han, Jong-Geun;Lee, Sung-Jin
    • Fire Science and Engineering
    • /
    • v.20 no.3 s.63
    • /
    • pp.29-34
    • /
    • 2006
  • The flash and fire point are the most important combustible properties used to determine the potential for the fire and explosion hazards of flammable material. The flash point is defined as the lowest temperature at which a flammable liquid gives off sufficient vapor to form an ignitable mixture with air near its surface or within a vessel. The fire point is the temperature of the flammable liquid at which there will be flaming combustion, sustained 5 seconds in response to the pilot flame. In this study, the flash points and fire points were measured to present raw data of the flammable risk assessment for acids, using Pensky-Martens Closed Cup(C.C.) apparatus (ASTM-D93) and Tag Open-cup (O.C.) apparatus(ASTM D 1310-86). The measured fire points were compared with the estimated values based on 1.11 times stoichiometric concentration. The values calculated by the proposed equation were in good agreement with measured values.

BIM-Based Generation of Free-form Building Panelization Model (BIM 기반 비정형 건축물 패널화 모델 생성 방법에 관한 연구)

  • Kim, Yang-Gil;Lee, Yun-Gu;Ham, Nam-Hyuk;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.12 no.4
    • /
    • pp.19-31
    • /
    • 2022
  • With the development of 3D-based CAD (Computer Aided Design), attempts at freeform building design have expanded to small and medium-sized buildings in Korea. However, a standardized system for continuous utilization of shape data and BIM conversion process implemented with 3D-based NURBS is still immature. Without accurate review and management throughout the Freeform building project, interference between members occurs and the cost of the project increases. This is very detrimental to the project. To solve this problem, we proposed a continuous utilization process of 3D shape information based on BIM parameters. Our process includes algorithms such as Auto Split, Panel Optimization, Excel extraction based on shape information, BIM modeling through Adaptive Component, and BIM model utilization method using ID Code. The optimal cutting reference point was calculated and the optimal material specification was derived using the Panel Optimization algorithm. With the Adaptive Component design methodology, a BIM model conforming to the standard cross-section details and specifications was uniformly established. The automatic BIM conversion algorithm of shape data through Excel extraction created a BIM model without omission of data based on the optimized panel cutting reference point and cutting line. Finally, we analyzed how to use the BIM model built for automatic conversion. As a result of the analysis, in addition to the BIM utilization plan in the general construction stage such as visualization, interference review, quantity calculation, and construction simulation, an individual management plan for the unit panel was derived through ID data input. This study suggested an improvement process by linking the existing research on atypical panel optimization and the study of parameter-based BIM information management method. And it showed that it can solve the problems of existing Freeform building project.

Reverse Engineering System Based 3D Digitizer (삼차원 디지타이저를 이용한 역설계 시스템)

  • Choi, Young;Park, Jin-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.102-109
    • /
    • 1999
  • Reverse engineering is a technique that helps designers to quickly generate computer interpretable data from existing physical objects. It can be used for generating CAD data from a mechanical part of high precision, or generating computer animation characters from physical mock-ups. We developed a low precision reverse engineering system that is composed of surface/solid generation software and a contact type commercial 3D digitizer. A unique point sampling procedure has been devised to easily form solid topology from the sampled data. It was also shown that STL data for rapid prototyping was successfully generated from the solid.

  • PDF

Comparison of the Accuracy to the Surveying Data by Terrestrial LiDAR and Total Station (지상LiDAR와 토탈스테이션에 의한 측량성과의 정확도 비교분석)

  • Yang, In-Tae;Shin, Moon-Seung;Lee, Sung-Koo;Shin, Myung-Seup
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.9-15
    • /
    • 2011
  • Nowadays, the Surveying field is growing rapidly in terms of technology such as TS(Total Station) surveying, photographic surveying, digital aerial photogrammetry, utilization of GIS(Geographic Information System) using high-resolution satellite imagery, obtaining 3D Coordinate using GPS. But control point surveying, benchmark measuring, and field Surveying are still performed by the engineers in the field. So, 3D yerrestrial laser scanner comes to the fore recently. 3D terrestrial laser scanner can get 3D coordinate about a number of sites of the subject in a short period with high accuracy. This paper compared the accuracy of data from the performance using 3D terrestrial laser scanner with that of TS. It also obtained the geopositioning accuracy result equivalent to the surveying result of TS. With further researches in the future, it is expected to be used not only in LiDAR itself but also in various areas like reconnaissance Surveying and construction by combining with TS or other Surveying equipments.

  • PDF

Design and Implementation of Real-time three dimensional Tracking system of gazing point (삼차원 응시 위치의 실 시간 추적 시스템 구현)

  • 김재한
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2605-2608
    • /
    • 2003
  • This paper presents design and implementation methods of the real-time three dimensional tracking system of the gazing point. The proposed method is based on three dimensional data processing of eye images in the 3D world coordinates. The system hardware consists of two conventional CCD cameras for acquisition of stereoscopic image and computer for processing. And in this paper, the advantages of the proposed algorithm and test results ate described.

  • PDF

Automation of Building Extraction and Modeling Using Airborne LiDAR Data (항공 라이다 데이터를 이용한 건물 모델링의 자동화)

  • Lim, Sae-Bom;Kim, Jung-Hyun;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.619-628
    • /
    • 2009
  • LiDAR has capability of rapid data acquisition and provides useful information for reconstructing surface of the Earth. However, Extracting information from LiDAR data is not easy task because LiDAR data consist of irregularly distributed point clouds of 3D coordinates and lack of semantic and visual information. This thesis proposed methods for automatic extraction of buildings and 3D detail modeling using airborne LiDAR data. As for preprocessing, noise and unnecessary data were removed by iterative surface fitting and then classification of ground and non-ground data was performed by analyzing histogram. Footprints of the buildings were extracted by tracing points on the building boundaries. The refined footprints were obtained by regularization based on the building hypothesis. The accuracy of building footprints were evaluated by comparing with 1:1,000 digital vector maps. The horizontal RMSE was 0.56m for test areas. Finally, a method of 3D modeling of roof superstructure was developed. Statistical and geometric information of the LiDAR data on building roof were analyzed to segment data and to determine roof shape. The superstructures on the roof were modeled by 3D analytical functions that were derived by least square method. The accuracy of the 3D modeling was estimated using simulation data. The RMSEs were 0.91m, 1.43m, 1.85m and 1.97m for flat, sloped, arch and dome shapes, respectively. The methods developed in study show that the automation of 3D building modeling process was effectively performed.

A Study of the Electrical Properties of the Buccal Area using Facial Surface Electromyography

  • Choi, Yoo Min;Kim, Jong Uk;Kim, Lak Hyung;Yook, Tae Han
    • Journal of Acupuncture Research
    • /
    • v.34 no.2
    • /
    • pp.75-82
    • /
    • 2017
  • Objectives : The purpose of this study was to determine the electrical properties of the buccal area using facial surface electromyography (sEMG). Methods : This research was conducted on 44 healthy participants irrespective of their sex. Surface electrodes were attached to the midpoints of three imaginary lines connecting ST4 (Dicang) to ST6 (Jiache), ST4 to SI18 (Quanliao), and ST4 to the center point of SI18 and ST6. Then, the participants were trained in the movement that included a comprehensive action of buccal area. While the participants were performing the motion, sEMG values ($E_1$, $E_2$, $E_3$) and the distance change of the three imaginary lines ($D_1$, $D_2$, $D_3$) were measured. The data were statistically analyzed using SPSS ver. 22.0. Results : Significant differences were observed in the distance changes ($D_1$>$D_3$, $D_2$>$D_3$) and sEMG values ($E_1$<$E_2$<$E_3$). Moreover, there were positive correlations between $D_1$ and $E_1$, $D_2$ and $E_2$. Conclusion : We suggest that the measurement at ST4 to the center point of ST6 and SI18 with this motion would be adequate to check the electrical characteristics of the buccal area.

Estimating Three-Dimensional Scattering Centers of a Target Using the 3D MEMP Method in Radar Target Recognition (레이다 표적 인식에서 3D MEMP 기법을 이용한 표적의 3차원 산란점 예측)

  • Shin, Seung-Yong;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.130-137
    • /
    • 2008
  • This paper presents high resolution techniques of three-dimensional(3D) scattering center extraction for a radar backscattered signal in radar target recognition. We propose a 3D pairing procedure, a new approach to estimate 3D scattering centers. This pairing procedure is more accurate and robust than the general criterion. 3D MEMP(Matrix Enhancement and Matrix Pencil) with the 3D pairing procedure first creates an autocorrelation matrix from radar backscattered field data samples. A matrix pencil method is then used to extract 3D scattering centers from the principal eigenvectors of the autocorrelation matrix. An autocorrelation matrix is constructed by the MSSP(modified spatial smoothing preprocessing) method. The observation matrix required for estimation of 3D scattering center locations is built using the sparse scanning order conception. In order to demonstrate the performance of the proposed technique, we use backscattered field data generated by ideal point scatterers.

Development of Deep Learning-based Automatic Classification of Architectural Objects in Point Clouds for BIM Application in Renovating Aging Buildings (딥러닝 기반 노후 건축물 리모델링 시 BIM 적용을 위한 포인트 클라우드의 건축 객체 자동 분류 기술 개발)

  • Kim, Tae-Hoon;Gu, Hyeong-Mo;Hong, Soon-Min;Choo, Seoung-Yeon
    • Journal of KIBIM
    • /
    • v.13 no.4
    • /
    • pp.96-105
    • /
    • 2023
  • This study focuses on developing a building object recognition technology for efficient use in the remodeling of buildings constructed without drawings. In the era of the 4th industrial revolution, smart technologies are being developed. This research contributes to the architectural field by introducing a deep learning-based method for automatic object classification and recognition, utilizing point cloud data. We use a TD3D network with voxels, optimizing its performance through adjustments in voxel size and number of blocks. This technology enables the classification of building objects such as walls, floors, and roofs from 3D scanning data, labeling them in polygonal forms to minimize boundary ambiguities. However, challenges in object boundary classifications were observed. The model facilitates the automatic classification of non-building objects, thereby reducing manual effort in data matching processes. It also distinguishes between elements to be demolished or retained during remodeling. The study minimized data set loss space by labeling using the extremities of the x, y, and z coordinates. The research aims to enhance the efficiency of building object classification and improve the quality of architectural plans by reducing manpower and time during remodeling. The study aligns with its goal of developing an efficient classification technology. Future work can extend to creating classified objects using parametric tools with polygon-labeled datasets, offering meaningful numerical analysis for remodeling processes. Continued research in this direction is anticipated to significantly advance the efficiency of building remodeling techniques.