• Title/Summary/Keyword: 3D Point Data

Search Result 1,128, Processing Time 0.031 seconds

Landscape View point on the technique of GIS visibility analysis for Scenic Resources Excavation - Focused on haenam dalmasan mihwangsa (scenic sites No.59)- (명승 문화재의 경관자원 발굴을 위한 조망지점 분석 -해남 달마산 미황사 일원(명승 제59호)을 중심으로-)

  • Lee, Won-Ho;Kim, Jae-Ung
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.9
    • /
    • pp.429-439
    • /
    • 2013
  • This study, as a purpose of viewshed anaiysis is selected for the landscape view point, View of the target Haenam Dalmasan Mihwangsa(Scenic site No.59) located in the terrain ridge. Criteria of landscape view point was built through both 3D visibility analysis by GIS and public preference. In results could be summarized as follows : Criteria of landscape view point by GIS was confirmed to be appropriate since a result of average score for 36 data calculated by 3D visibility analysis was higher than intermediate score. Futhermore, the landscape view point with higher score could be associate with higher public preference was determined. 3D visibility analysis in this study should be implemented additionally with not GIS, public preference but distance and extent of visibility research to discover, maintain and preserve objective and empirical landscape view point to public as resources of scenic sites.

An Evaluation on the Accuracy of a 3D Scanning Device Using Spherical Coordinate Mechanisms (구면좌표계식 기구를 이용한 3D 스캐닝 장치의 정밀도 평가)

  • Maeng, Hee-Young;Park, Sangwook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • To improve the efficiency of a reverse engineering process, many researches have recently tried to develop efficient, automatic 3D scanning devices. A new automatic 3D scanning device using a spherical coordinate system mechanism is introduced in this study. This device incorporates a guide motion along the spherical coordinate to compound each 3D data point automatically. The experiments correlating the system assembling tolerance with the form accuracy were conducted to verify the efficiency of the system for the scanning of an object, including complex shapes and manifold sections. In addition, the required time and system accuracy, taken during the scanning process of complicated artifact models, were investigated. Further, based on these empirical results, it was ascertained that the superior productivity of this new device offers a more precise and efficient scan when compared to conventional methodologies.

Method of 3D Body Surface Segmentation and 2D Pattern Development Using Triangle Simplification and Triangle Patch Arrangement (Triangle Simplification에 의한 3D 인체형상분할과 삼각조합방법에 의한 2D 패턴구성)

  • Jeong, Yeon-Hee;Hong, Kyung-Hi;Kim, See-Jo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.9_10 s.146
    • /
    • pp.1359-1368
    • /
    • 2005
  • When we develop the tight-fit 2D pattern from the 3D scan data, segmentation of the 3D scan data into several parts is necessary to make a curved surface into a flat plane. In this study, Garland's method of triangle simplification was adopted to reduce the number of data point without distorting the original shape. The Runge-Kutta method was applied to make triangular patch from the 3D surface in a 2D plane. We also explored the detailed arrangement method of small 2D patches to make a tight-fit pattern for a male body. As results, minimum triangle numbers in the simplification process and efficient arrangement methods of many pieces were suggested for the optimal 2D pattern development. Among four arrangement methods, a block method is faster and easier when dealing with the triangle patches of male's upper body. Anchoring neighboring vertices of blocks to make 2D pattern was observed to be a reasonable arrangement method to get even distribution of stress in a 2D plane.

3D Measurement Method Based on Point Cloud and Solid Model for Urban SingleTrees (Point cloud와 solid model을 기반으로 한 단일수목 입체적 정량화기법 연구)

  • Park, Haekyung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1139-1149
    • /
    • 2017
  • Measuring tree's volume is very important input data of various environmental analysis modeling However, It's difficult to use economical and equipment to measure a fragmented small green space in the city. In addition, Trees are sensitive to seasons, so we need new and easier equipment and quantification methods for measuring trees than lidar for high frequency monitoring. In particular, the tree's size in a city affect management costs, ecosystem services, safety, and so need to be managed and informed on the individual tree-based. In this study, we aim to acquire image data with UAV(Unmanned Aerial Vehicle), which can be operated at low cost and frequently, and quickly and easily quantify a single tree using SfM-MVS(Structure from Motion-Multi View Stereo), and we evaluate the impact of reducing number of images on the point density of point clouds generated from SfM-MVS and the quantification of single trees. Also, We used the Watertight model to estimate the volume of a single tree and to shape it into a 3D structure and compare it with the quantification results of 3 different type of 3D models. The results of the analysis show that UAV, SfM-MVS and solid model can quantify and shape a single tree with low cost and high time resolution easily. This study is only for a single tree, Therefore, in order to apply it to a larger scale, it is necessary to follow up research to develop it, such as convergence with various spatial information data, improvement of quantification technique and flight plan for enlarging green space.

Development of a Building Safety Grade Calculation DNN Model based on Exterior Inspection Status Evaluation Data (건축물 안전등급 산출을 위한 외관 조사 상태 평가 데이터 기반 DNN 모델 구축)

  • Lee, Jae-Min;Kim, Sangyong;Kim, Seungho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.665-676
    • /
    • 2021
  • As the number of deteriorated buildings increases, the importance of safety diagnosis and maintenance of buildings has been rising. Existing visual investigations and building safety diagnosis objectivity and reliability are poor due to their reliance on the subjective judgment of the examiner. Therefore, this study presented the limitations of the previously conducted appearance investigation and proposed 3D Point Cloud data to increase the accuracy of existing detailed inspection data. In addition, this study conducted a calculation of an objective building safety grade using a Deep-Neural Network(DNN) structure. The DNN structure is generated using the existing detailed inspection data and precise safety diagnosis data, and the safety grade is calculated after applying the state evaluation data obtained using a 3D Point Cloud model. This proposed process was applied to 10 deteriorated buildings through the case study, and achieved a time reduction of about 50% compared to a conventional manual safety diagnosis based on the same building area. Subsequently, in this study, the accuracy of the safety grade calculation process was verified by comparing the safety grade result value with the existing value, and a DNN with a high accuracy of about 90% was constructed. This is expected to improve economic feasibility in the future by increasing the reliability of calculated safety ratings of old buildings, saving money and time compared to existing technologies.

Tightness Evaluation of Smart Sportswear Using 3D Virtual Clothing (3D 가상착의를 이용한 스마트 스포츠웨어의 밀착성 평가)

  • Soyoung Kim;Heeran Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.1
    • /
    • pp.123-136
    • /
    • 2023
  • To develop smart sportswear capable of measuring biometric data, we created a close-fitting pattern using two- and three-dimensional (2D and 3D, respectively) methods. After 3D virtual fitting, the tightness of each pattern was evaluated using image processing of contact points, mesh deviation, and cross-sectional shapes. In contact-point analysis, the 3D pattern showed high rates of contact with the body (84.6% and 93.1% for shirts and pants, respectively). Compared with the 2D pattern, the 3D pattern demonstrated closer contact at the lower chest, upper arm, and thigh regions, where electrocardiography and electromyography were primarily carried out. The overall average gap was also lower in the 3D pattern (5.27 and 4.66 mm in shirts and pants, respectively). In the underbust, waist, thigh circumference, and mid-thigh circumference, the cross-section distance between clothing and body was showed a statistically significant difference and evenly distributed in the 3D pattern, exhibiting more closeness. The tightness and fit of the 3D smart sportswear sensor pattern were successfully evaluated. We believe that this study is critical, as it facilitates the comparison of different patterns through visualization and digitization through 3D virtual fitting.

Automatic Object Recognition in 3D Measuring Data (3차원 측정점으로부터의 객체 자동인식)

  • Ahn, Sung-Joon
    • The KIPS Transactions:PartB
    • /
    • v.16B no.1
    • /
    • pp.47-54
    • /
    • 2009
  • Automatic object recognition in 3D measuring data is of great interest in many application fields e.g. computer vision, reverse engineering and digital factory. In this paper we present a software tool for a fully automatic object detection and parameter estimation in unordered and noisy point clouds with a large number of data points. The software consists of three interactive modules each for model selection, point segmentation and model fitting, in which the orthogonal distance fitting (ODF) plays an important role. The ODF algorithms estimate model parameters by minimizing the square sum of the shortest distances between model feature and measurement points. The local quadric surface fitted through ODF to a randomly touched small initial patch of the point cloud provides the necessary initial information for the overall procedures of model selection, point segmentation and model fitting. The performance of the presented software tool will be demonstrated by applying to point clouds.

3D Model Generation and Accuracy Evaluation using Unmanned Aerial Oblique Image (무인항공 경사사진을 이용한 3차원 모델 생성 및 정확도 평가)

  • Park, Joon-Kyu;Jung, Kap-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.587-593
    • /
    • 2019
  • The field of geospatial information is rapidly changing due to the development of sensor and data processing technology that can acquire location information. And demand is increasing in various related industries and social activities. The construction and utilization of three dimensional geospatial information that is easy to understand and easy to understand can be an essential element to improve the quality and reliability of related services. In recent years, 3D laser scanners are widely used as 3D geospatial information construction technology. However, 3D laser scanners may cause shadow areas where data acquisition is not possible when objects are large in size or complex in shape. In this study, 3D model of an object has been created by acquiring oblique images using an unmanned aerial vehicle and processing the data. The study area was selected, oblique images were acquired using an unmanned aerial vehicle, and point cloud type 3D model with 0.02 m spacing was created through data processing. The accuracy of the 3D model was 0.19m and the average was 0.11m. In the future, if accuracy is evaluated according to shooting and data processing methods, and 3D model construction and accuracy evaluation and analysis according to camera types are performed, the accuracy of the 3D model will be improved. In the point cloud type 3D model, Cross section generation, drawing of objects, and so on, it is possible to improve work efficiency of spatial information service and related work.

Precision Measurement of Vehicle Shape using Industrial Photogrammetry (산업 사진측량에 의한 자동차의 외형 정밀 측정)

  • 정성혁;박찬홍;이재기
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.2
    • /
    • pp.179-186
    • /
    • 2004
  • This study describes that the method of precision measurement of vehicle shape and the method of measurement the deformation that it is occurred the reason of accident using industrial photogrammatry. The curved shape is measured using the projection target which is able to acquire the point cloud data. 3D coordinates of the target were able to acquire through object picturing and analysis of coordinates. The acquired point cloud data was done 3D modeling to form the surface with TIN. Also, It able to interpretate a deformation surveying accurately the occurred parts of deformation, then can furnish to the analysis of traffic accident the precise and effective data.

Development of PCC data transmission and reception using MMT (MMT를 이용한 PCC 데이터 송수신 기술 개발)

  • Park, Seong-Hwan;Kim, Kyu-Heon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.576-578
    • /
    • 2020
  • 최근 사용자에게 더욱 몰입감 있는 콘텐츠를 제공하기 위한 기술에 대한 관심이 증가하고 있으며 기존의 2D 콘텐츠와는 다른 새로운 방식인 3D 콘텐츠에 대한 연구가 활발히 진행되고 있으며 그 중 가장 대표적인 것이 Point Cloud 영상이라고 할 수 있다. Point Cloud의 경우 수많은 3차원 좌표를 가진 점들로 구성되어 있으며 각 점들마다 Attribute 값을 이용하여 색상 등의 표현이 가능한 구조로 이루어져 있다. 이러한 특성 때문에 Point Cloud 데이터는 방대한 용량을 가지고 있으며 기존의 2D 방식과 데이터 구조가 상이하기 때문에 새로운 압축 표준이 요구되었다. 이에 미디어 표준화 단체인 MPEG(Moving Picture Experts Group)에서는 MPEG-I(Immersive) 차세대 프로젝트 그룹을 이용하여 이러한 움직임에 대응하고 있다. MPEG-I의 part 5(Video-based Point Cloud Compression, V-PCC)에서는 객체를 대상으로 하여 기존의 비디오 코덱을 활용한 Point Cloud 압축 표준화를 진행중이다. V-PCC 데이터의 경우 기존의 2D 영상 데이터와 같이 전송을 통해 소비될 가능성이 아주 높기 때문에 이에 대한 고려가 필요하다. 현재 MPEG에서 표준화를 완료한 MMT(MPEG Media Transport)라는 전송 표준이 존재하기 때문에 이 기술을 활용 가능할 것으로 보인다. 따라서 본 논문에서는 Point Cloud 데이터를 압축한 V-PCC 데이터를 전송 표준 방식인 MMT를 이용하여 전송하는 방안에 대하여 제안한다.

  • PDF