• Title/Summary/Keyword: 3D Network-Based Topological Data Model

Search Result 7, Processing Time 0.021 seconds

3D Adjacency Spatial Query using 3D Topological Network Data Model (3차원 네트워크 기반 위상학적 데이터 모델을 이용한 3차원 인접성 공간질의)

  • Lee, Seok-Ho;Park, Se-Ho;Lee, Ji-Yeong
    • Spatial Information Research
    • /
    • v.18 no.5
    • /
    • pp.93-105
    • /
    • 2010
  • Spatial neighborhoods are spaces which are relate to target space. A 3D spatial query which is a function for searching spatial neighborhoods is a significant function in spatial analysis. Various methodologies have been proposed in related these studies, this study suggests an adjacent based methodology. The methodology of this paper implements topological data for represent a adjacency via using network based topological data model, then apply modifiable Dijkstra's algorithm to each topological data. Results of ordering analysis about an adjacent space from a target space were visualized and considered ways to take advantage of. Object of this paper is to implement a 3D spatial query for searching a target space with a adjacent relationship in 3D space. And purposes of this study are to 1)generate adjacency based 3D network data via network based topological data model and to 2)implement a 3D spatial query for searching spatial neighborhoods by applying Dijkstra's algorithms to these data.

Validation of Efficient Topological Data Model for 3D Spatial Queries (3차원 공간질의를 위한 효율적인 위상학적 데이터 모델의 검증)

  • Lee, Seok-Ho;Lee, Ji-Yeong
    • Spatial Information Research
    • /
    • v.19 no.1
    • /
    • pp.93-105
    • /
    • 2011
  • In recent years, large and complex three-dimensional building has been constructed by the development of building technology and advanced IT skills, and people have lived there and spent a considerable time so far. Accordingly. in this sophisticatcd three-dimensional space, emergencies services or convenient information services have been in demand. In order to provide these services efficiently, understanding of topological relationships among the complex space should be supported naturally. Not on1y each method of understanding the topological relationships but also its efficiency can be different depending on different topological data models. B-rep based data model is the most widely used for storaging and representing of topological relationships. And from early 2000s, many researches on a network based topological data model have been conducted. The purpose of this study is to verify the efficiency of performance on spatial queries. As a result, Network-based topological data model is more efficient than B-rep based data model for determining the spatial relationship.

A Conceptual Data Model for a 3D Cadastre in Korea

  • Lee, Ji-Yeong;Koh, June-Hwan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.565-574
    • /
    • 2007
  • Because of most current cadastral systems maintain 2D geometric descriptions of parcels linked to administrative records, the system may not reflect current tendency to use space above and under the surface. The land has been used in multi-levels, e.g. constructions of multi-used complex buildings, subways and infrastructure above/under the ground. This cadastre situation of multilevel use of lands cannot be defined as cadastre objects (2D parcel-based) in the cadastre systems. This trend has requested a new system in which right to land is clearly and indisputably recorded because a right of ownership on a parcel relates to a space in 3D, not any more relates to 2D surface area. Therefore, this article proposes a 3D spatial data model to represent geometrical and topological data of 3D (property) situation on multilevel uses of lands in 3D cadastre systems, and a conceptual 3D cadastral model in Korea to design a conceptual schema for a 3D cadastre. Lastly, this paper presents the results of an experimental implementation of the 3D Cadastre to perform topological analyses based on 3D Network Data Model to identify spatial neighbors.

3D-GIS Network Modeling for Optimal Path Finding in Indoor Spaces (건물 내부공간의 최적경로 탐색을 위한 3차원 GIS 네트워크 모델링)

  • Park, In-Hye;Jun, Chul-Min;Choi, Yoon-Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.3
    • /
    • pp.27-32
    • /
    • 2007
  • 3D based information is demanded increasingly as cities grow three dimensionally and buildings become large and complex. The use of 3D GIS is also getting attention as fundamental data for ubiquitous computing applications such as location-based guidance, path finding and emergency escaping. However, most 3D modeling techniques are focused on the visualization of buildings or terrains and do not have topological structures required in spatial analyses. In this paper, we introduce a method to incorporate topological relationship into 3D models by combining 2D GIS layers and 3D model. We divide indoor spaces of a 3D model into discrete objects and then define the relationship with corresponding features in 2D GIS layers through database records. We also show how to construct hallways network in the 2D-3D integrated building model. Finally, we test different cases of route finding situations inside a building such as normal origin-destination path finding and emergency evacuation.

  • PDF

Using Omnidirectional Images for Semi-Automatically Generating IndoorGML Data

  • Claridades, Alexis Richard;Lee, Jiyeong;Blanco, Ariel
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.5
    • /
    • pp.319-333
    • /
    • 2018
  • As human beings spend more time indoors, and with the growing complexity of indoor spaces, more focus is given to indoor spatial applications and services. 3D topological networks are used for various spatial applications that involve navigation indoors such as emergency evacuation, indoor positioning, and visualization. Manually generating indoor network data is impractical and prone to errors, yet current methods in automation need expensive sensors or datasets that are difficult and expensive to obtain and process. In this research, a methodology for semi-automatically generating a 3D indoor topological model based on IndoorGML (Indoor Geographic Markup Language) is proposed. The concept of Shooting Point is defined to accommodate the usage of omnidirectional images in generating IndoorGML data. Omnidirectional images were captured at selected Shooting Points in the building using a fisheye camera lens and rotator and indoor spaces are then identified using image processing implemented in Python. Relative positions of spaces obtained from CAD (Computer-Assisted Drawing) were used to generate 3D node-relation graphs representing adjacency, connectivity, and accessibility in the study area. Subspacing is performed to more accurately depict large indoor spaces and actual pedestrian movement. Since the images provide very realistic visualization, the topological relationships were used to link them to produce an indoor virtual tour.

Spatiotemporal Routing Analysis for Emergency Response in Indoor Space

  • Lee, Jiyeong;Kwan, Mei-Po
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.6
    • /
    • pp.637-650
    • /
    • 2014
  • Geospatial research on emergency response in multi-level micro-spatial environments (e.g., multi-story buildings) that aims at understanding and analyzing human movements at the micro level has increased considerably since 9/11. Past research has shown that reducing the time rescuers needed to reach a disaster site within a building (e.g., a particular room) can have a significant impact on evacuation and rescue outcomes in this kind of disaster situations. With the purpose developing emergency response systems that are capable of using complex real-time geospatial information to generate fast-changing scenarios, this study develops a Spatiotemporal Optimal Route Algorithm (SORA) for guiding rescuers to move quickly from various entrances of a building to the disaster site (room) within the building. It identifies the optimal route and building evacuation bottlenecks within the network in real-time emergency situations. It is integrated with a Ubiquitous Sensor Network (USN) based tracking system in order to monitor dynamic geospatial entities, including the dynamic capacities and flow rates of hallways per time period. Because of the limited scope of this study, the simulated data were used to implement the SORA and evaluate its effectiveness for performing 3D topological analysis. The study shows that capabilities to take into account detailed dynamic geospatial data about emergency situations, including changes in evacuation status over time, are essential for emergency response systems.

Finding Isolated Zones through Connectivity Relationship Analysis in Indoor Space (실내공간의 연결성 분석을 통한 고립지역 탐색)

  • Lee, Seul-Ji;Lee, Ji-Yeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.3
    • /
    • pp.229-240
    • /
    • 2012
  • In Korea, u-City has been constructed as IT-based new city with introduction of the ubiquitous concept. However, most currently provided u-services are just monitoring services based on the USN(Ubiquitous Sensor Network) technology, so spatial analysis is insufficient. Especially, buildings have been rapidly constructed and expanded in multi-levels, and people spend a lot of time in indoor space, so indoor spatial analysis is necessary. Therefore, connectivity relationship in indoor space is analyzed using the topological data model. Topological relationships could be redefined due to the dynamic changes of environment in indoor space, and changes could have an effect on analysis results. In this paper, the algorithms of finding isolated zones is developed by analyzing connectivity relationship between space objects in built-environments after changes of environment in indoor space due to specific situation such as fire. And the system that visualizes isolated zones as well as three-dimensional data structure of indoor space is developed to get the analysis result by using the analysis algorithms.