• Title/Summary/Keyword: 3D Measurement

Search Result 3,593, Processing Time 0.036 seconds

Acquisition Model for 3D Shape Measurement Data

  • Park, Jong-Sik;Jang, Wang-Jin;Lee, Seong-Beom;Park, Chan-Seok
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.16-21
    • /
    • 2008
  • The demand for three-dimensional (3D) shape measurements is increasing in a variety of fields, including the manufacture of molds and dies. The most popular technology for 3D shape measurement is the coordinate measuring machine (CMM) with a contact trigger probe. Although a CMM provides a high degree of accuracy, it is inefficient due to its long measuring time. It also has difficulty measuring soft objects that can be deformed by the touch of the contact probe. In addition, a CMM cannot digitize areas that are difficult to reach, and cannot capture very minute details on the surface of complex parts. For these reasons, optical non-contact measurement techniques are receiving more attention since they eliminate most of the problems associated with contact methods. Laser scanning is emerging as one of the more promising non-contact measurement techniques. This paper describes various acquisition considerations for laser scanning, including the accuracy of the 3D scan data, which depends on the charge-coupled device (CCD) gain and noise. The CCD gain and noise of a 3D laser scanner are varied while keeping the other conditions constant, and the measurement results are compared to the dimensions of a standard model. The experimental results show that a considerable time savings and an optimum degree of accuracy are possible by selecting the proper CCD gain and noise.

Development of the system for error evaluation in coordinate measuring machines (3차원 좌표 특정기의 오차 평가 시스템 개발)

  • ;M.Burdekin;G.Peggs
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.116-120
    • /
    • 1991
  • Technique of length measurement error is widely used in the accuracy assessment of CMMS(Coordinate measuring machines) and machine tools, as it is simple and direct measurement within the working volume of a machine. In this paper, a new method is proposed for the evaluation of the length measurement error in relation to the volumetric accuracy. lD, 2D, and 3D measuring lines are considered for recpective length measurement error: 1D, 2D, and 3D length measurement uncertainties are evaluated from volumetric accuracy. The relationship between the volumetric accuracy md length measurement error to is discussed. PC based system for length measurement error evaluation and simulation is developed.

  • PDF

Analysis of Difference between Direct Measurement and 3-D Automatic Measurement According to Classification of Side Figure of Elderly Women (고령 여성의 측면체형 분류에 따른 직접측정치와 3차원 자동측정치간의 차이 분석)

  • Chung, Juwon;Nam, Yun-Ja;Park, Jinhee
    • Fashion & Textile Research Journal
    • /
    • v.21 no.5
    • /
    • pp.627-639
    • /
    • 2019
  • This study analyzes differences between the results of 3D direct measurements and automated measurements for Korean elderly females according to age groups, side somatotype, and BMI groups. This study compares the measurement differences of the direct and the 3D automated measurements for women between the ages of 70 to 85, according to age group, BMI group, and side somatotype. A comparison of the results of the direct measurement and the 3D automated measurements for elderly women show that a meaningful discrepancy exists for 29 items out of 33 items. Furthermore, the results of comparing the average error tolerance recommended by ISO20685 shows that 30 items out of 33 items exceeded ISO recommendations. The results of the automated measurement program shows a higher degree of accuracy for straight postures; however, this unsuitable for postures of elderly women with a changed somatotype. The analysis results of the measurement difference indicate the suitability of the automatic measurement programs is found to be high for stood postures, while problems seem to exist on several items along with an automated program is not appropriately used due to posture and part of body changes for elderly women. Therefore, it is recommended to develop an algorithm, that reflects the body changes of elderly women first and then upgrade the automated program equipped with a measurement size method. It is hoped that the study results can be utilized as base data for improving the automated measurement program.

Measurement and Scale Effects of Digitized Virtual Human Head

  • Takakazu, Ishimatsu;Chan, Tony
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.89.1-89
    • /
    • 2001
  • Measurement of complex surfaces without touching is desirable in several fields. This arises mainly for measurement of complex surfaces including those surfaces that deform during touch. Our research presented in this paper describes the use of a 3D digitizer for scanning 3D objects. The use of such a device, in addition to proper calibration, requires proper scaling in all three dimensions. We propose measurement techniques to measure various aspects of the surface circumference, area and volume. We also present experiments from using a 3D Minolta digitizer for measuring 3D human heads.

  • PDF

Development of a 3-D Position Measurement Algorithm using 2-D Image Information (2차원 영상 정보를 이용한 3차원 위치 측정 알고리즘 개발)

  • Lee, J.H.;Jung, S.H.;Kim, D.H.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.141-148
    • /
    • 2013
  • There are several problems in the conventional 2-D image processing and 3-D measurement systems. In the case of the 2-D image processing system, it is not possible to detect elevation data. In a 3-D measurement system, it requires a skillful operator and a lot of time for measuring data. Also, there exist data errors depending on operators. The limitation of detecting elevation data in the 2-D image processing system can be solved by laser diodes. In this study an algorithm that measures the accurate data in a subject face to be detected by combining laser diodes and a commercial CCD camera is developed. In the development process, a planar equation is developed using laser diodes and the equation is used to obtain a normal vector. Based on the results, an algorithm that transforms commercial CCD camera coordinates to 3-D coordinates is proposed. The completed measurement method will be applied to replace a manual measurement system for vehicle bodies and parts by an automated system.

Proposal of Nail Tip Size by Measuring Nail Size of Korean Women in Their 20s -Focusing on Size Comparison Through Direct Measurement and 3D Scanner Measurement- (20대 국내여성의 손톱 사이즈 측정을 통한 네일 팁 사이즈 제안 -직접측정법과 3D 스캐너측정법을 통한 사이즈 비교를 중심으로-)

  • Lee, Eunsil;Kim, Eunsil
    • Journal of Fashion Business
    • /
    • v.24 no.1
    • /
    • pp.102-116
    • /
    • 2020
  • After its introduction in Korea, nail art is becoming active, especially among women in their 20s and 30s who are interested in fashion and beauty. Although self-nail tips are available online in various designs for each brand that is currently on the market, these designs and sizes of self-nail tips on the market are different for each age group. Since the design or size is not suggested for the different situations, there are difficulties in purchasing products that match the shape and size of nails of consumers. In this study, frequency analysis was performed using 'SPSS statistics 21.0 for windows program' to analyze data obtained by direct measurement method and 3D scanner measurement method for Korean women in their 20s. For comparative analysis between direct and 3D scanner measurements, a corresponding sample, 'T-test', was performed. As a result, we proposed the standardization of nail tip size after comparative analysis between direct measurement and 3D scanner measurement. Previous studies have been proceeding with direct measurement method. However, this study introduced a 3D scanner measurement method in the nail field and attempted the standardization of nail size by age group of Korean women. Importantly, this sutdy suggests standardization of nail tip size among missing body sizes.

A Study on the 3-D Deformation Analysis for Safety Diagnosis of Bridges (교량의 안전진단을 위한 3차원 변형해석에 관한 연구)

  • 강준묵;윤희천;배상호
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.1
    • /
    • pp.69-76
    • /
    • 1995
  • This study is the 3-D precision deformation measurement of a bridge, obtain results of precision control points by GPS and 3-D measurement system and develope efficientlty technices which can solve precision 3-D analysis by CRP In the result, we could overcome the problems of former control point measurement in the way of the combination system of GPS and 3-D measurement system to positioning decision of reference points and control points. Then we could symplify old measurement process on the 3-D deformation analysis of a linear structure and complement parted analysis fault of measurement instrument.

  • PDF

Using 3D image-based body shape Measurement to increase the accuracy of body shape Measurement (체형 측정의 정확도를 높이기 위한 3차원 영상 기반의 체형 측정 활용)

  • So, Ji Ho;Jeon, Young-Ju
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.803-806
    • /
    • 2020
  • The body shape measurement method using 3D images has been widely used due to the recent development of 3D measurement cameras and algorithms. Existing 3D imaging devices are expensive devices, and there is a limit to their universalization. Due to the recent spread of inexpensive 3D cameras and the development of various measurement methods, various possibilities are being shown. It is expected to have a great impact on the medical device market that requires accurate data collection. Various medical device products using artificial intelligence are emerging, and accurate data collection is the most important to develop accurate artificial intelligence algorithms. Collection equipment using 3D cameras is expected to act as a major factor in the development of artificial intelligence algorithms using 3D images.

Validity and Reliability of an Inertial Measurement Unit-Based 3D Angular Measurement of Shoulder Joint Motion

  • Yoon, Tae-Lim
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.3
    • /
    • pp.145-151
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the validity and reliability of the measurement of shoulder joint motions using an inertial measurement unit (IMU). Methods: For this study, 33 participants (32 females and 1 male) were recruited. The subjects were passively positioned with the shoulder placed at specific angles using a goniometer (shoulder flexion $0^{\circ}-170^{\circ}$, abduction $0^{\circ}-170^{\circ}$, external rotation $0^{\circ}-90^{\circ}$, and internal rotation $0^{\circ}-60^{\circ}$ angles). Kinematic data on the shoulder joints were simultaneously obtained using IMU three-dimensional (3D) angular measurement (MyoMotion) and photographic measurement. Test-retest reliability and concurrent validity were examined. Results: The MyoMotion system provided good to very good relative reliability with small standard error of measurement (SEM) and minimal detectable change (MDC) values from all three planes. It also presented acceptable validity, except for some of shoulder flexion, shoulder external rotation, and shoulder abduction. There was a trend for the shoulder joint measurements to be underestimated using the IMU 3D angular measurement system compared to the goniometer and photo methods in all planes. Conclusion: The IMU 3D angular measurement provided a reliable measurement and presented acceptable validity. However, it showed relatively low accuracy in some shoulder positions. Therefore, using the MyoMotion measurement system to assess shoulder joint angles would be recommended only with careful consideration and supervision in all situations.

High precision 3-dimensional object measurement using slit type of laser projector (슬리트형 레이저 투광기를 이용한 고정밀 3차원 물체계측)

  • Kim, Tae-Hyo;Park, Young-Seok;Lee, Chuy-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.613-618
    • /
    • 1997
  • In this paper, we designed a line CCD camera for a flying image, which is composed of a line CCD sensor(2048 cells) and a rotating mirror, and investigated its optical properties. We also made the 3-D image from the flying image which is made of 2-D image being juxtaposed to 1-D images obtained by the camera, and performed the calibration to acquire high precision 3-D data. As a result, we obtained the 3-D measurement system using the slit type of laser projector is available to measure the high precision shape of objects.

  • PDF