• Title/Summary/Keyword: 3D MOTION ANALYSIS

Search Result 744, Processing Time 0.027 seconds

A Study on the Slowly Varying Wave Drift Force Acting on a Semi-Submersible Platform in Waves (반잠수식 시추선에 작용하는 장주기 표류력에 관한 연구)

  • S.Y.,Hong;P.M.,Lee;D.C.,Hong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.2
    • /
    • pp.49-63
    • /
    • 1989
  • Wave drift forces which are small in magnitudes compared to the first order wave exciting forces can cause very large motion of a vessel in waves. In this paper a theoretical and experimental analysis is made of the mean and slowly varying wave dirft forces on the semi-submersible platform. Theoretical calculations are performed by using near field method with three dimensional diffraction theory and model tests are carried out in regular and irregular waves with a 1/60 semi model. Test results are compared with theoretical calculations and the mooring spring effects in the test are discussed.

  • PDF

The Influence of Restricted Arm Swing on Symmetry, Movement of Trunk and Pelvis Rotation according to Using a Mobile Phone

  • Chu, Jae-Hyeung;Kim, Yun-Jin;Ko, Yu-Min;Park, Ji Won
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • Purpose: This study was conducted to investigate the effects of variations in arm swing during gait on movement of the trunk and pelvis. During the gait task, the angle of the trunk and pelvic rotation were analyzed according to arm swing conditions. Methods: Seventeen healthy males participated in this study. All subjects were analyzed for gait on a treadmill three times each under three different types of arm swing conditions - natural arm swing, restricted arm swing using a phone, restricted swing in both arms. 3-D motion analysis systems were used to collect and analyze the kinematic data of trunk and pelvic movements, and repeated one-way ANOVA was used to compare the trunk and pelvic kinematic data and symmetry index. The level of significance was ${\alpha}=0.05$. Results: The results showed kinematic differences in trunk and pelvic during gait based on the arm swing conditions. Specifically, there were significant differences in trunk rotation, left and right trunk rotation and symmetry index of trunk rotation during gait among the three arm swing conditions. ROM was used to calculate a symmetry index (SI) based on the average left and right trunk rotation in which a value closer to zero indicated better balance. The SI obtained for arm swing restricted with the phone was closer to -1 than the other conditions. Conclusion: Restricted arm swing due to use of a phone had the possibility to induce instability of postural control while walking, which could be seen to suggest a risk of falling during gait.

Soft-$golf^{TM}$ Shaft Kick Point and Stiffness due to the Difference in Performance Analysis (소프트 골프 샤프트의 킥 포인트와 강성의 차이에 따른 성능 분석)

  • Oh, H.Y.;Yu, M.;Kim, S.H.;Jang, J.H.;Kim, N.G.;Kim, D.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.3
    • /
    • pp.227-233
    • /
    • 2010
  • This study analyzed performance according to kick point and stiffness of Soft-$golf^{TM}$ shaft. This research team developed soft-$golf^{TM}$ as a new fusion sports with similar motions with golf and it can be learned safely for all age groups in 2002. The head of Soft-$golf^{TM}$ club is made of zinc alloy and has a mesh or a grid structure, and shaft uses carbon graphite to reduce the total weight of the club. To improve carry distance and to assure consistency of a ball during Soft-$golf^{TM}$ swing, this study manufactured shaft with various kick points (low, middle and high) and stiffness (stiff, regular, lady, morelady) and analyzed a swing motion with characteristics of each shaft presented in a dynamic condition such as a ball's speed, a head's torsion angle and a ball's deviation with ProAnalyst program through a high-speed camera taking pictures using a swing machine robot system(Robo-7). From all of the results, this study determined an appropriate shaft of Soft-$golf^{TM}$.

Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core

  • Eyvazian, Arameh;Hamouda, Abdel Magid;Tarlochan, Faris;Mohsenizadeh, Saeid;Dastjerdi, Ali Ahmadi
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.891-906
    • /
    • 2019
  • This study considers the instability behavior of sandwich plates considering magnetorheological (MR) fluid core and piezoelectric reinforced facesheets. As facesheets at the top and bottom of structure have piezoelectric properties they are subjected to 3D electric field therefore they can be used as actuator and sensor, respectively and in order to control the vibration responses and loss factor of the structure a proportional-derivative (PD) controller is applied. Furthermore, Halpin-Tsai model is used to determine the material properties of facesheets which are reinforced by graphene platelets (GPLs). Moreover, because the core has magnetic property, it is exposed to magnetic field. In addition, Kelvin-Voigt theory is applied to calculate the structural damping of the piezoelectric layers. In order to consider environmental forces applied to structure, the visco-Pasternak model is assumed. In order to consider the mechanical behavior of structure, sinusoidal shear deformation theory (SSDT) is assumed and Hamilton's principle according to piezoelasticity theory is employed to calculate motion equations and these equations are solved based on differential cubature method (DCM) to obtain the vibration and modal loss factor of the structure subsequently. The effect of different factors such as GPLs distribution, dimensions of structure, electro-magnetic field, damping of structure, viscoelastic environment and boundary conditions of the structure on the vibration and loss factor of the system are considered. In order to indicate the accuracy of the obtained results, the results are validated with other published work. It is concluded from results that exposing magnetic field to the MR fluid core has positive effect on the behavior of the system.

Stability Evaluation of Bump Crossing and Loading of Proto-type Mini-Forwarder by Computer Simulation (컴퓨터 시뮬레이션을 이용한 소형 임내차 시작기의 장애물 통과 및 적재 안정성 평가)

  • Park H. K.;Kim K. U.;Shim S. B.;Kim J. W.;Park M. S.;Song T. Y.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.6 s.113
    • /
    • pp.366-372
    • /
    • 2005
  • The objective of this study was to evaluate the bump crossing and loading stability of a proto-type mini-forwarder under development. The evaluation was performed by computer simulation using a multi-body dynamic analysis program, Recur- Dyn 5.21. The proto-type was modeled and its properties such as mass, mass center, and mass moment of inertia were determined using 3D CAD modeler, Solid Edge 8.0. The $\%$ errors of masses, mass center, mass moment of inertia, and vertical motion of the model were within less than $10\%$ and the model's behavior agreed relatively well with those of the proto-type when traversing over a rectangular bump. Using the validated model, bump crossing of the proto-type was simulated and the loading limit was determined. It was found that effects of the shapes of bump on the bump crossing performance was insignificant within the practical heights of bumps. Stability of bump crossing increased with loading. However, loading of longer logs than 2.7 m made the crossing unstable because the ends of logs contacted ground when traversing over the bump. The maximum loading capacity of the proto-type was estimated to be 7.8 kN of 2.7 m long logs.

Analysis on lower extremity joint moment during a developpe devant (Developpe devant 수행시 하지 관절 모멘트 분석)

  • Park, Ki-Sa;Shin, Sung-Hu;Kwon, Moon-Seok;Kim, Tae-Hwan;Lee, Hung-Na
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.1
    • /
    • pp.133-144
    • /
    • 2004
  • The purpose of this study was to analyze the joint moment on lower extremity during a developpe devant. Data were collected by Kwon3D, KwonGRF program. Two professional modem female dancers were participated in this experiment. Subjects performed a developpe devant in meddle heights. On the axes of X, Y, Z, it was shown that the maximum joint moment was occurred in hip joint. The moments are plotted during developpe devant. The ankle muscles generate a plantar flexion moment and the knee muscles generate a flexion moment and The hip muscles generate a extension moment. So these muscles of joint muscles were known to play a key role in keeping the body balance while doing developpe devant. In addition adduction moment occurred at hip, knee, an ankle in the order of amount, we could assume from this data that him out motion started from the hip joint. There was small active turn out possible below the hip joint. A small amount of extra turn out could be obtained when standing because of flexion between the foot and floor, which could be used to give a passive external rotation force to the whole leg and this could produce a rotation between the knee and foot. This passive external rotation could produce very damaging results. Therefore, lower extremity joint muscles such as hip, knee, and ankle muscle should be trained to keep the body balance and prevent injury during developpe devant performance. And for the safe and perfect turn ort performance, hip joint abduction, the most important external rotating muscle for him out is needed to train and full stretching should be done in advance.

A Comparative Study of Characters of Muscle Activity in Lower Limb and Gait Pattern on Type of Heel Rockers (신발 아웃솔의 굴곡 형태에 따른 하지근육활동의 특성과 보행 패턴의 비교연구)

  • An, Song-Y;Kim, Sang-Bum;Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.111-119
    • /
    • 2007
  • The purpose of this study was to investigate muscle activity and gait pattern in lower limb depending on the outsole of heel rockers. Fifteen healthy men volunteered for this experiment. Each subject performed totally three trails with two pairs of different heel rocker shoes and a pair of normal running shoes at speed of 1.33m/s for 1 minute during walking on a treadmill. Kinematic data gathered in 100Hz was recorded and analyzed by using the 3D motion capture system to measure the trunk tilt and joint angle of the right lower limb. And the lower extremity muscle activities were simultaneously recorded in 1000Hz and assessed by using EMG. The statistical analysis was the one-way ANOVA with the repeated measures to compare among the three kinds of shoes. The level of statistical significance for all tests was 0.05. Joint angle of lower limb was showed statistically significant different in MST(hip joint), LHS(ankle joint), and RTO(knee and ankle joint). Muscle activity of rectus femoris and biceps femoris was statistically increased in both heel rocker shoes during gait cycle on treadmill. The maximum peak time of tibialis anterior in the negative heel rocker showed the delay of approximately 23.8%time than normal shoes. Gait pattern variability of the negative heel rocker was increased in the first half of the stance phase and the variability of the positive heel rocker was increased in the terminal stance phase. In Conclusion, stability was decreased in between joints of lower limb on positive heel rocker than negative heel rocker. This study found that there were different joint angle, muscle activity, gait pattern and coordinate system of the lower limb in each kind of shoes. These unstability affected the lower extremity and the whole body. A further study has to be continued with study of rehabilitation and exercise for a long-term.

Sports Biomechanical Analysis before and after Applying Weight Belt during Squat Exercise (스쿼트 동작 시 웨이트 벨트 착용 전·후에 따른 운동역학적 분석)

  • LEE, Jeong-Ki;HEO, Bo-Seob;KIM, Yong-Jae;LEE, Hyo-Taek
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.4
    • /
    • pp.893-902
    • /
    • 2016
  • The purpose of this study is to investigate the effect of wearing a weightlifting belt, which is an auxiliary equipment used during squat, by measuring and analyzing biomechanical difference in lower limb and proposing safer and to suggest a more effective exercise method for general population. Selected 8 male participants in their 20s who have not performed regular resistance exercise for at least a year, but have experience of performing squat. The comprehensive method of study is as follows: subjects were notified of the purpose of the study and were told to practice warm-up and the squat motion for the experiment for 20 minutes. When the participant believed they were ready to begin, the experiment was started. At controlled points, foot pressure distribution sensor has been installed. Then left and right feet have been placed on the pressure distribution sensor, from which data for successful squat position that does not satisfy the criteria for failure have been collected and computed with Kwon3D XP program and TPScan program. For data processing of this study, SPSS 21.0 was used to calculated mean (M) and standard deviation (SD) of the analyzed values, and paired t-test has been conducted to investigate the difference before and after wearing the weightlifting belt, with p-value of ${\alpha}<.05$. As for time consumed depending on usage of weightlifting belt in squat, statistically significant difference has been found in P2, which is recovery movement. Lower limb angle depending on usage of weightlifting belt in squat has shown statistically significant difference in E1 foot joint(p<. 001). There has been statistically significant difference in E2 knee joint. Foot pressure percentage depending on usage of weightlifting belt in squat were found to be statistically significant (p<. 01) in both regions of anterior and posterior foot.

Effects of a Water Exercise on the Lower Extremities Coordination during Obstacle Gait in the Female Elderly - Focusing on Training and Detraining Effects - (수중운동이 여성노인 장애물보행 시 하지 협응에 미치는 영향 - 훈련 및 훈련잔여효과 중심으로 -)

  • Yoon, Sukhoon;Chang, Jae-Kwan;Kim, Joonyeon
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.2
    • /
    • pp.95-101
    • /
    • 2014
  • The purpose of this study was to investigate the training and detraining effects of a 8-week water exercise on lower extremities coordination during obstacle gait in the female elderly. Eight elderly participants (age: $76.58{\pm}4.97$ yrs, height: $148.88{\pm}7.19$ cm, body mass: $56.62{\pm}6.82$ kg, and leg length: $82.36{\pm}2.98$ cm), who stayed at the Seoul K welfare center, were recruited for this study. All participants had no history of orthopedic abnormality within the past 1 year and completed the aquatic exercise program which lasted for 8 weeks. To identify the training and detraining effect of 8 weeks of water exercise, a 3-D motion analysis with 7 infrared cameras and one force plate sampling frequency set at 100 Hz and 1,000 Hz, respectively, was performed. A two-way ANOVA was performed to find training and detraining effects among diferent obstacle heights. In this study significant level was set at .05. Significant training effects of LTS (lead foot thigh and shank) coordination in all obstacle height were found (p<.05). It is also found that the training effect of LTS remained 37%, 58%, and 25% in obstacle height of 30%, 40%, and 50%, respectively. Lead foot showed the greater detraining effect of coordination compared with trail foot, and SF (shank and foot) coordination revealed better detraining effects of coordination compare with TS (thigh and shank) in both feet. Based on the findings, a 8 week water exercise give an positive effects to the elderly in terms of segment cooperation which potentially helps reducing their accident falls. The magnitude of detraining may also help the elderly to find the retraining moment.

The Influence of Unstable Shoes on Kinematics and Kinetics of the Lower limb Joints during Sit-to-stand task

  • Kim, Yun-Jin;Park, Ji-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.1
    • /
    • pp.14-21
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate examine how the kinematics and kinetics of lower limb joints were changed depending on the unstable shoes (US) during sit-to-stand task (SitTS). Methods: Nineteen healthy females were participated in this study. The subjects performed sit-to-stand task with US and barefoot. The experiment was repeated three times for each tasks with conditions. The kinematics and kinetics of lower limb joint were measured and analyzed using a 3-D motion analysis system. A paired t-test was utilised performed for to identificationy of changes in mean of angle, force, and moment between both the two conditions. Results: The results of this study showed kinematic differences in lower limb joints during SitTS based on the US. The hip, knee, and ankle angle showed statistically significant differences during SitTS. At the initial of SitTS, Tthe force and moment of the hip flexor, hip extensor, knee flexor, knee extensor, ankle flexor, and ankle extensor showed statistically significant differences. At the terminal of SitTS, Tthe force and moment of the hip flexor, hip extensor, knee flexor, knee extensor, ankle flexor, and ankle extensor showed statistically significant differences. At the maximum of SitTS, Tthe moment of the hip extensor showed statistically significant differences. The force and moment of the ankle flexor, extensor moment showed statistically significant differences. Conclusion: Therefore, Wwearing US is considered to influence on the lower limb joints kinematics and kinetics during SitTS movements, and thus suggests the possibility that of reducing the risks of pain, and osteoarthritis caused by changes in the loading of lower limb joints.