• Title/Summary/Keyword: 3D LiDar

Search Result 293, Processing Time 0.028 seconds

Realistic Building Modeling from Sequences of Digital Images

  • Song, Jeong-Heon;Kim, Min-Suk;Han, Dong-Yeob;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.516-516
    • /
    • 2002
  • With the wide usage of LiDAR data and high-resolution satellite image, 3D modeling of buildings in urban areas has become an important research topic in the photogrammetry and computer vision field for many years. However the previous modeling has its limitations of merely texturing the image to the DSM surface of the study area and does not represent the relief of building surfaces. This study is focused on presenting a system of realistic 3D building modeling from consecutive stereo image sequences using digital camera. Generally when acquiring images through camera, various parameters such as zooming, focus, and attitude are necessary to extract accurate results, which in certain cases, some parameters have to be rectified. It is, however, not always possible or practical to precisely estimate or rectify the information of camera positions or attitudes. In this research, we constructed the collinearity condition of stereo images through extracting the distinctive points from stereo image sequence. In addition, we executed image matching with Graph Cut method, which has a very high accuracy. This system successfully performed the realistic modeling of building with a good visual quality. From the study, we concluded that 3D building modeling of city area could be acquired more realistically.

  • PDF

Geometric Regualrization of Irregular Building Polygons: A Comparative Study

  • Sohn, Gun-Ho;Jwa, Yoon-Seok;Tao, Vincent;Cho, Woo-Sug
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.545-555
    • /
    • 2007
  • 3D buildings are the most prominent feature comprising urban scene. A few of mega-cities in the globe are virtually reconstructed in photo-realistic 3D models, which becomes accessible by the public through the state-of-the-art online mapping services. A lot of research efforts have been made to develop automatic reconstruction technique of large-scale 3D building models from remotely sensed data. However, existing methods still produce irregular building polygons due to errors induced partly by uncalibrated sensor system, scene complexity and partly inappropriate sensor resolution to observed object scales. Thus, a geometric regularization technique is urgently required to rectify such irregular building polygons that are quickly captured from low sensory data. This paper aims to develop a new method for regularizing noise building outlines extracted from airborne LiDAR data, and to evaluate its performance in comparison with existing methods. These include Douglas-Peucker's polyline simplication, total least-squared adjustment, model hypothesis-verification, and rule-based rectification. Based on Minimum Description Length (MDL) principal, a new objective function, Geometric Minimum Description Length (GMDL), to regularize geometric noises is introduced to enhance the repetition of identical line directionality, regular angle transition and to minimize the number of vertices used. After generating hypothetical regularized models, a global optimum of the geometric regularity is achieved by verifying the entire solution space. A comparative evaluation of the proposed geometric regulator is conducted using both simulated and real building vectors with various levels of noise. The results show that the GMDL outperforms the selected existing algorithms at the most of noise levels.

True Orthoimage Generation from LiDAR Intensity Using Deep Learning (딥러닝에 의한 라이다 반사강도로부터 엄밀정사영상 생성)

  • Shin, Young Ha;Hyung, Sung Woong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.363-373
    • /
    • 2020
  • During last decades numerous studies generating orthoimage have been carried out. Traditional methods require exterior orientation parameters of aerial images and precise 3D object modeling data and DTM (Digital Terrain Model) to detect and recover occlusion areas. Furthermore, it is challenging task to automate the complicated process. In this paper, we proposed a new concept of true orthoimage generation using DL (Deep Learning). DL is rapidly used in wide range of fields. In particular, GAN (Generative Adversarial Network) is one of the DL models for various tasks in imaging processing and computer vision. The generator tries to produce results similar to the real images, while discriminator judges fake and real images until the results are satisfied. Such mutually adversarial mechanism improves quality of the results. Experiments were performed using GAN-based Pix2Pix model by utilizing IR (Infrared) orthoimages, intensity from LiDAR data provided by the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF) through the ISPRS (International Society for Photogrammetry and Remote Sensing). Two approaches were implemented: (1) One-step training with intensity data and high resolution orthoimages, (2) Recursive training with intensity data and color-coded low resolution intensity images for progressive enhancement of the results. Two methods provided similar quality based on FID (Fréchet Inception Distance) measures. However, if quality of the input data is close to the target image, better results could be obtained by increasing epoch. This paper is an early experimental study for feasibility of DL-based true orthoimage generation and further improvement would be necessary.

Forest Digital Twin Implementation Study for 3D Forest Geospatial Information Service (3차원 산림공간정보 서비스를 위한 산림 디지털트윈 구현 연구)

  • In-Ha Choi;Sang-Kwan Nam;Seung-Yub Kim;Dong-Gook Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1165-1172
    • /
    • 2023
  • Recently, Korea has declared carbon neutrality by 2050. The Korea Forest Service is promoting the precision and high technology of forest resource surveys. As such, the demand for forest resource management is increasing, and the need to build a digital twin of forest space is increasing. However, to date, digital twin has only built and provided virtual city services, which are city and nationwide digital twin environments. Three-dimensional digital twin services targeting forest space are not operated and provided. Therefore, in this study, we aimed to implement a forest digital twin environment to provide 3D forest spatial information services corresponding to vertical information such as tree-level height and thorax diameter. By lightweighting realistic 3D tree models and applying 3D Tiles, we confirmed the feasibility of implementing a forest digital twin environment for 3D forest spatial information services. Through continuous research, we plan to implement a forest digital twin that can deploy and service 3D tree models for trees nationwide, including street trees in urban areas. This is expected to enable the development of forest digital twin services for forest resource management.

Estimating the Forest Micro-topography by Unmanned Aerial Vehicles (UAV) Photogrammetry (무인항공기 사진측량 방법에 의한 산림 미세지형 평가)

  • Cho, Min-Jae;Choi, Yun-Sung;Oh, Jae-Heun;Lee, Eun-Jai
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.343-350
    • /
    • 2021
  • Unmanned aerial vehicles(UAV) photogrammetry provides a cost-effective option for collecting high-resolution 3D point clouds compared with UAV LiDAR and aerial photogrammetry. The main objectives of this study were to (1) validate the accuracy of 3D site model generated, and (2) determine the differences between Digital Elevation Model(DEM) and Digital Surface Model(DSM). In this study, DEM and DSM were shown to have varying degree of accuracy from observed data. The results indicated that the model predictions were considered tend to over- and under-estimated. The range of RMSE of DSM predicted was from 8.2 and 21.3 when compared with the observation. In addition, RMSE values were ranged from 10.2 and 25.8 to compare between DEM predicted and field data. The predict values resulting from the DSM were in agreement with the observed data compared to DEM calculation. In other words, it was determined that the DSM was a better suitable model than DEM. There is potential for enabling automated topography evaluation of the prior-harvest areas by using UAV technology.

Digital twin river geospatial information, water facility modeling, and water disaster response system (디지털 트윈 하천 공간정보 구축, 시설물 모델링 및 수재해 대응 시스템 구축 사례)

  • Park, DongSoon;Yoo, Hojun;Kim, Taemin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.6-6
    • /
    • 2022
  • 최근 수재해에 대응하기 위한 물관리 환경은 기후변화에 따른 홍수 피해 심화와 댐과 하천 시설의 노후화 점증, 하천관리일원화 등 정책적 변화, 그리고 포스트코로나 디지털 혁신 등 복합적 대전환 시대 진입에 따라 복잡다단한 양상을 보이고 있다. 디지털 트윈은 디지털 대전환(digital transformation) 시대 다양한 산업 영역에서 지능화와 생산성 향상을 목적으로 도입되고 있다. 본 국가 시범사업에서는 170 km에 달하는 섬진강 유역 전체를 대상으로 홍수에 대응하기 위한 디지털 트윈 플랫폼(K-Twin SJ)을 구축하고 있다. 본 플랫폼은 국가 인프라 지능정보화 사업의 일환으로 시작되었으며, 공간정보와 시설물 모델링, 홍수 분석 등 수재해에 대응하기 위한 수자원 분야의 다학제적인 강소기업들과 K-water에서 컨소시엄을 구성하여 추진하고 있다. 본 사업의 내용은 섬진강 댐-하천 유역에 대하여 고정밀도 3D 공간정보화, 실시간 물관리 데이터 연계, 홍수 분석 시뮬레이션, AI 댐 운영 최적화, AI 사면 정보 생성, 하천 제방 안전성 평가, AI 지능형 CCTV 영상분석, 간이 침수피해 예측, 드론 제약사항 조사 체계 개발을 포함하고 있다. 물관리 데이터와 하천 시설정보를 트윈 플랫폼 상에서 위치기반으로 시각화 표출하기 위해서는 유역의 공간정보를 3차원으로 구축하는 과정이 필수적이다. 따라서 GIS 기반의 섬진강 하천 중심 공간정보 구축을 위해 유역의 국가 정사영상과 5m 수치표고모형(DEM)은 최신성과를 협조 받아 적용하였으며, 홍수 분석을 위한 하천 중심 공간정보는 신규 헬기에 LiDAR 매핑을 수행하여 0.5m 급 DEM을 신규 구축하였다. 또한 하천 시설물 중 섬진강댐과 79개 주요 하천 횡단 교량과 3개 보 시설을 지상기준점 측량과 드론 매핑, 패턴 방식의 경량화 작업을 통해 트윈에 탑재할 수 있는 시설물 3D 객체 모델을 제작하였다. 홍수 분석을 위해서는 섬진강 유역에 대해 K-Drum, K-River, K-Flood 모델을 구축하였으며, AI 하천 수위 예측 학습 모델을 개발하였다. 섬진강 디지털 트윈 유역 물관리 플랫폼을 통해 데이터 기반의 똑똑한 물관리를 구현하고자 한다.

  • PDF

Autonomous Driving Pesticide Robot Platform for Agricultural Environments (농촌 환경에서의 자율 주행이 가능한 방제 로봇 플랫폼)

  • Sung Woo Noh;Eun-Kyung Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.6
    • /
    • pp.1395-1402
    • /
    • 2024
  • This paper proposes an autonomous driving pesticide robot system capable of performing pest control tasks autonomously in orchard and greenhouse environments. The proposed system is designed to perform efficient pest control operations in both indoor and outdoor settings by integrating a replaceable 50-liter pesticide container with autonomous driving technology. To overcome the limitations of existing agricultural autonomous robots in navigating indoor and outdoor environments, a 3D global mapping technology combining LiDAR, INS, and GNSS, along with an autonomous tracking algorithm, was implemented. The robot's operational status is stably controlled via a real-time monitoring system based on 5G, LTE, and WiFi, and it provides accurate detection and avoidance of dynamic obstacles using an AI-based object recognition algorithm. The proposed system is expected to improve the efficiency of agricultural tasks, address labor shortages by replacing human work in hazardous environments, and further promote agricultural automation.

An Automated OpenGIS-based Tool Development for Flood Inundation Mapping and its Applications in Jeju Hancheon (OpenGIS 기반 홍수범람지도 작성 자동화 툴 개발 및 제주 한천 적용 연구)

  • Kim, Kyungdong;Kim, Taeeun;Kim, Dongsu;Yang, Sungkee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.691-702
    • /
    • 2019
  • Flood inundation map has various important roles in terms of municipal planning, timely dam operation, economic levee design, and building flood forecasting systems. Considering that the riparian areas adjacent to national rivers with high potential flood vulnerability conventionally imposed special cares to justify applications of recently available two- or three-dimensional flood inundation numerical models on top of digital elevation models of dense spatial resolution such as LiDAR irrespective of their high costs. On the contrary, local streams usually could not have benefits from recent technological advances, instead they inevitably have relied upon time-consuming manual drawings or have accepted DEMs with poor resolutions or inaccurate 1D numerical models for producing inundation maps due mainly to limited budgets and suitable techniques. In order to efficiently and cost-effectively provide a series of flood inundation maps dedicatedly for the local streams, this study proposed an OpenGIS-based flood mapping tool named Open Flood Mapper (OFM). The spatial accuracy of flood inundation map derived from the OFM was validated throughout comparison with an inundation trace map acquired after typhoon Nari in Hancheon basin located in Jeju Island. Also, a series of inundation maps from the OFM were comprehensively investigated to track the burst of flood in the extreme flood events.

Application of Remote Sensing and Geographic Information System in Forest Sector (원격탐사와 지리정보시스템의 산림분야 활용)

  • Lee, Woo-Kyun;Kim, Moonil;Song, Cholho;Lee, Sle-gee;Cha, Sungeun;Kim, GangSun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.2
    • /
    • pp.27-42
    • /
    • 2016
  • Forest accounts for almost 64 percents of total land cover in South Korea. For inventorying, monitoring, and managing such large area of forest, application of remote sensing and geographic information system (RS/GIS) technology is essential. On the basis of spectral characteristics of satellite imagery, forest cover and tree species can be classified, and forest cover map can be prepared. Using three dimensional data of LiDAR(Light Detection and Ranging), tree location and tree height can be measured, and biomass and carbon stocks can be also estimated. In addition, many indices can be extracted using reflection characteristics of land cover. For example, the level of vegetation vitality and forest degradation can be analyzed with VI (vegetation Index) and TGSI (Top Grain Soil Index), respectively. Also, pine wilt disease and o ak w ilt d isease c an b e e arly detected and controled through understanding of change in vegetation indices. RS and GIS take an important role in assessing carbon storage in climate change related projects such as A/R CDM, REDD+ as well. In the field of climate change adaptation, impact and vulnerability can be spatio-temporally assessed for national and local level with the help of spatio-temporal data of GIS. Forest growth, tree mortality, land slide, forest fire can be spatio-temporally estimated using the models in which spatio-temporal data of GIS are added as influence variables.

AUTOMATIC 3D BUILDING INFORMATION EXTRACTION FROM A SINGLE QUICKBIRD IMAGE AND DIGITAL MAPS

  • Kim, Hye-Jin;Byun, Young-Gi;Choi, Jae-Wan;Han, You-Kyung;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.238-242
    • /
    • 2007
  • Today's commercial high resolution satellite imagery such as that provided by IKONOS and QuickBird, offers the potential to extract useful spatial information for geographical database construction and GIS applications. Digital maps supply the most generally used GIS data probiding topography, road, and building information. Currently, the building information provided by digital maps is incompletely constructed for GIS applications due to planar position error and warped shape. We focus on extracting of the accurate building information including position, shape, and height to update the building information of the digital maps and GIS database. In this paper, we propose a new method of 3D building information extraction with a single high resolution satellite image and digital map. Co-registration between the QuickBird image and the 1:1,000 digital maps was carried out automatically using the RPC adjustment model and the building layer of the digital map was projected onto the image. The building roof boundaries were detected using the building layer from the digital map based on the satellite azimuth. The building shape could be modified using a snake algorithm. Then we measured the building height and traced the building bottom automatically using triangular vector structure (TVS) hypothesis. In order to evaluate the proposed method, we estimated accuracy of the extracted building information using LiDAR DSM.

  • PDF