• Title/Summary/Keyword: 3D LiDAR sensor

Search Result 56, Processing Time 0.026 seconds

Development and Performance Evaluation of Multi-sensor Module for Use in Disaster Sites of Mobile Robot (조사로봇의 재난현장 활용을 위한 다중센서모듈 개발 및 성능평가에 관한 연구)

  • Jung, Yonghan;Hong, Junwooh;Han, Soohee;Shin, Dongyoon;Lim, Eontaek;Kim, Seongsam
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1827-1836
    • /
    • 2022
  • Disasters that occur unexpectedly are difficult to predict. In addition, the scale and damage are increasing compared to the past. Sometimes one disaster can develop into another disaster. Among the four stages of disaster management, search and rescue are carried out in the response stage when an emergency occurs. Therefore, personnel such as firefighters who are put into the scene are put in at a lot of risk. In this respect, in the initial response process at the disaster site, robots are a technology with high potential to reduce damage to human life and property. In addition, Light Detection And Ranging (LiDAR) can acquire a relatively wide range of 3D information using a laser. Due to its high accuracy and precision, it is a very useful sensor when considering the characteristics of a disaster site. Therefore, in this study, development and experiments were conducted so that the robot could perform real-time monitoring at the disaster site. Multi-sensor module was developed by combining LiDAR, Inertial Measurement Unit (IMU) sensor, and computing board. Then, this module was mounted on the robot, and a customized Simultaneous Localization and Mapping (SLAM) algorithm was developed. A method for stably mounting a multi-sensor module to a robot to maintain optimal accuracy at disaster sites was studied. And to check the performance of the module, SLAM was tested inside the disaster building, and various SLAM algorithms and distance comparisons were performed. As a result, PackSLAM developed in this study showed lower error compared to other algorithms, showing the possibility of application in disaster sites. In the future, in order to further enhance usability at disaster sites, various experiments will be conducted by establishing a rough terrain environment with many obstacles.

Collision Avoidance Sensor System for Mobile Crane (전지형 크레인의 인양물 충돌방지를 위한 환경탐지 센서 시스템 개발)

  • Kim, Ji-Chul;Kim, Young Jea;Kim, Mingeuk;Lee, Hanmin
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.62-69
    • /
    • 2022
  • Construction machinery is exposed to accidents such as collisions, narrowness, and overturns during operation. In particular, mobile crane is operated only with the driver's vision and limited information of the assistant worker. Thus, there is a high risk of an accident. Recently, some collision avoidance device using sensors such as cameras and LiDAR have been applied. However, they are still insufficient to prevent collisions in the omnidirectional 3D space. In this study, a rotating LiDAR device was developed and applied to a 250-ton crane to obtain a full-space point cloud. An algorithm that could provide distance information and safety status to the driver was developed. Also, deep-learning segmentation algorithm was used to classify human-worker. The developed device could recognize obstacles within 100m of a 360-degree range. In the experiment, a safety distance was calculated with an error of 10.3cm at 30m to give the operator an accurate distance and collision alarm.

A Fast Correspondence Matching for Iterative Closest Point Algorithm (ICP 계산속도 향상을 위한 빠른 Correspondence 매칭 방법)

  • Shin, Gunhee;Choi, Jaehee;Kim, Kwangki
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.373-380
    • /
    • 2022
  • This paper considers a method of fast correspondence matching for iterative closest point (ICP) algorithm. In robotics, the ICP algorithm and its variants have been widely used for pose estimation by finding the translation and rotation that best align two point clouds. In computational perspectives, the main difficulty is to find the correspondence point on the reference point cloud to each observed point. Jump-table-based correspondence matching is one of the methods for reducing computation time. This paper proposes a method that corrects errors in an existing jump-table-based correspondence matching algorithm. The criterion activating the use of jump-table is modified so that the correspondence matching can be applied to the situations, such as point-cloud registration problems with highly curved surfaces, for which the existing correspondence-matching method is non-applicable. For demonstration, both hardware and simulation experiments are performed. In a hardware experiment using Hokuyo-10LX LiDAR sensor, our new algorithm shows 100% correspondence matching accuracy and 88% decrease in computation time. Using the F1TENTH simulator, the proposed algorithm is tested for an autonomous driving scenario with 2D range-bearing point cloud data and also shows 100% correspondence matching accuracy.

Toward Accurate Road Detection in Challenging Environments Using 3D Point Clouds

  • Byun, Jaemin;Seo, Beom-Su;Lee, Jihong
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.606-616
    • /
    • 2015
  • In this paper, we propose a novel method for road recognition using 3D point clouds based on a Markov random field (MRF) framework in unstructured and complex road environments. The proposed method is focused on finding a solution for an analysis of traversable regions in challenging environments without considering an assumption that has been applied in many past studies; that is, that the surface of a road is ideally flat. The main contributions of this research are as follows: (a) guidelines for the best selection of the gradient value, the average height, the normal vectors, and the intensity value and (b) how to mathematically transform a road recognition problem into a classification problem that is based on MRF modeling in spatial and visual contexts. In our experiments, we used numerous scans acquired by an HDL-64E sensor mounted on an experimental vehicle. The results show that the proposed method is more robust and reliable than a conventional approach based on a quantity evaluation with ground truth data for a variety of challenging environments.

A Study on the Effective Preprocessing Methods for Accelerating Point Cloud Registration

  • Chungsu, Jang;Yongmin, Kim;Taehyun, Kim;Sunyong, Choi;Jinwoo, Koh;Seungkeun, Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.111-127
    • /
    • 2023
  • In visual slam and 3D data modeling, the Iterative Closest Point method is a primary fundamental algorithm, and many technical fields have used this method. However, it relies on search methods that take a high search time. This paper solves this problem by applying an effective point cloud refinement method. And this paper also accelerates the point cloud registration process with an indexing scheme using the spatial decomposition method. Through some experiments, the results of this paper show that the proposed point cloud refinement method helped to produce better performance.

3D Costmap Generation and Path Planning for Reliable Autonomous Flight in Complex Indoor Environments (복합적인 실내 환경 내 신뢰성 있는 자율 비행을 위한 3차원 장애물 지도 생성 및 경로 계획 알고리즘)

  • Boseong Kim;Seungwook Lee;Jaeyong Park;Hyunchul Shim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.337-345
    • /
    • 2023
  • In this paper, we propose a 3D LiDAR sensor-based costmap generation and path planning algorithm using it for reliable autonomous flight in complex indoor environments. 3D path planning is essential for reliable operation of UAVs. However, existing grid search-based or random sampling-based path planning algorithms in 3D space require a large amount of computation, and UAVs with weight constraints require reliable path planning results in real time. To solve this problem, we propose a method that divides a 3D space into several 2D spaces and a path planning algorithm that considers the distance to obstacles within each space. Among the paths generated in each space, the final path (Best path) that the UAV will follow is determined through the proposed objective function, and for this purpose, we consider the rotation angle of the 2D space, the path length, and the previous best path information. The proposed methods have been verified through autonomous flight of UAVs in real environments, and shows reliable obstacle avoidance performance in various complex environments.

Analysis Method for Full-length LiDAR Waveforms (라이다 파장 분석 방법론에 대한 연구)

  • Jung, Myung-Hee;Yun, Eui-Jung;Kim, Cheon-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.4 s.316
    • /
    • pp.28-35
    • /
    • 2007
  • Airbone laser altimeters have been utilized for 3D topographic mapping of the earth, moon, and planets with high resolution and accuracy, which is a rapidly growing remote sensing technique that measures the round-trip time emitted laser pulse to determine the topography. The traveling time from the laser scanner to the Earth's surface and back is directly related to the distance of the sensor to the ground. When there are several objects within the travel path of the laser pulse, the reflected laser pluses are distorted by surface variation within the footprint, generating multiple echoes because each target transforms the emitted pulse. The shapes of the received waveforms also contain important information about surface roughness, slope and reflectivity. Waveform processing algorithms parameterize and model the return signal resulting from the interaction of the transmitted laser pulse with the surface. Each of the multiple targets within the footprint can be identified. Assuming each response is gaussian, returns are modeled as a mixture gaussian distribution. Then, the parameters of the model are estimated by LMS Method or EM algorithm However, each response actually shows the skewness in the right side with the slowly decaying tail. For the application to require more accurate analysis, the tail information is to be quantified by an approach to decompose the tail. One method to handle with this problem is proposed in this study.

Semantic SLAM & Navigation Based on Sensor Fusion (센서융합 기반 의미론적 SLAM 및 내비게이션)

  • Gihyeon Lee;Seung-hyun Ahn;Suhyeon Sin;Hyesun Ryu;Yuna Hong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.848-849
    • /
    • 2023
  • 본 논문은 로봇의 실내 환경에서의 자율성을 높이기 위한 SLAM과 내비게이션 방법을 제시한다. 2D LiDAR와 카메라를 이용하여 위치를 인식하고 사람과 장애물을 의미론적으로 검출하며, ICP와 RTAB-map, YOLOv3를 통합하여 Semantic Map을 생성하고 실내 환경에서 자율성을 유지한다. 이 연구를 통해 로봇이 복잡한 환경에서도 높은 수준의 자율성을 유지할 수 있는지 확인하고자 한다.

Development of the 3D Imaging System and Automatic Registration Algorithm for the Intelligent Excavation System (IES) (지능형 굴삭 시스템을 위한 모바일 3D 이미징 시스템 및 자동 정합 알고리즘의 개발)

  • Chae, Myung-Jin;Lee, Gyu-Won;Kim, Jung-Ryul;Park, Jae-Woo;Yoo, Hyun-Seok;Cho, Moon-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.1
    • /
    • pp.136-145
    • /
    • 2009
  • The objective of the Intelligent Excavation System (IES) is to recognize the work environment and produce work plan and automatically control the excavator through integrating sensor and robot technologies. This paper discusses one of the core technologies of IES development project, development of 3D work environment modeling. 3D laser scanner is used for 3-dimensional mathematical model that can be visualized in virtual space in 3D. This paper describes (1) how the most appropriate 3D imaging system has been chosen; (2) the development of user interface and customization of the s/w to control the scanner for IES project; (3) the development of the mobile station for the scanner; (4) and the algorithm for the automatic registration of laser scan segments for IES project. The development system has been tested on the construction field and lessons learned and future development requirements are suggested.

Geometric Regualrization of Irregular Building Polygons: A Comparative Study

  • Sohn, Gun-Ho;Jwa, Yoon-Seok;Tao, Vincent;Cho, Woo-Sug
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.545-555
    • /
    • 2007
  • 3D buildings are the most prominent feature comprising urban scene. A few of mega-cities in the globe are virtually reconstructed in photo-realistic 3D models, which becomes accessible by the public through the state-of-the-art online mapping services. A lot of research efforts have been made to develop automatic reconstruction technique of large-scale 3D building models from remotely sensed data. However, existing methods still produce irregular building polygons due to errors induced partly by uncalibrated sensor system, scene complexity and partly inappropriate sensor resolution to observed object scales. Thus, a geometric regularization technique is urgently required to rectify such irregular building polygons that are quickly captured from low sensory data. This paper aims to develop a new method for regularizing noise building outlines extracted from airborne LiDAR data, and to evaluate its performance in comparison with existing methods. These include Douglas-Peucker's polyline simplication, total least-squared adjustment, model hypothesis-verification, and rule-based rectification. Based on Minimum Description Length (MDL) principal, a new objective function, Geometric Minimum Description Length (GMDL), to regularize geometric noises is introduced to enhance the repetition of identical line directionality, regular angle transition and to minimize the number of vertices used. After generating hypothetical regularized models, a global optimum of the geometric regularity is achieved by verifying the entire solution space. A comparative evaluation of the proposed geometric regulator is conducted using both simulated and real building vectors with various levels of noise. The results show that the GMDL outperforms the selected existing algorithms at the most of noise levels.