• Title/Summary/Keyword: 3D LiDAR

Search Result 284, Processing Time 0.032 seconds

Flood Simulation of Upriver District Considering an Influence of Backwater

  • Um, Dae Yong;Song, Yong Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_2
    • /
    • pp.631-642
    • /
    • 2012
  • This study aims to predict inundation and flood-stricken areas more accurately by simulating flood damage caused by reversible flow of rain water in the upper water system through precise 3D terrain model and backwater output. For the upstream of the South Han-River, precise 3D terrain model was established by using aerial LiDAR data and backwater by area was output by applying the storm events of 2002 including the history of flood damage. The 3D flood simulation was also performed by using GIS Tool and for occurrence of related rainfall events, inundation events of the upriver region of water system was analyzed. In addition, the results of flood simulation using backwater were verified by making the inundation damage map for the relevant area and comparing it with flood simulation's results. When comparing with the results of the flood simulation applying uniformly the gauging station's water surface elevation used for the existing flood simulation, it is found that the results of the flood simulation using backwater are close to the actual inundation damage status. Accordingly, the causes of flood occurred in downstream of water system and upstream that has different topographic characteristics could be investigated and applying the simulation with backwater is proved more proper in order to procure accuracy of the flood simulation for the upriver region.

Evaluation of Applicability for 3D Scanning of Abandoned or Flooded Mine Sites Using Unmanned Mobility (무인 이동체를 이용한 폐광산 갱도 및 수몰 갱도의 3차원 형상화 위한 적용성 평가)

  • Soolo Kim;Gwan-in Bak;Sang-Wook Kim;Seung-han Baek
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • An image-reconstruction technology, involving the deployment of an unmanned mobility equipped with high-speed LiDAR (Light Detection And Ranging) has been proposed to reconstruct the shape of abandoned mine. Unmanned mobility operation is remarkably useful in abandoned mines fraught with operational difficulties including, but not limited to, obstacles, sludge, underwater and narrow tunnel with the diameter of 1.5 m or more. For cases of real abandoned mines, quadruped robots, quadcopter drones and underwater drones are respectively deployed on land, air, and water-filled sites. In addition to the advantage of scanning the abandoned mines with 2D solid-state lidar sensors, rotation of radiation at an inclination angle offers an increased efficiency for simultaneous reconstruction of mineshaft shapes and detecting obstacles. Sensor and robot posture were used for computing rotation matrices that helped compute geographical coordinates of the solid-state lidar data. Next, the quadruped robot scanned the actual site to reconstruct tunnel shape. Lastly, the optimal elements necessary to increase utility in actual fields were found and proposed.

Application of 3D Chain Code for Object Recognition and Analysis (객체인식과 분석을 위한 3D 체인코드의 적용)

  • Park, So-Young;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.5
    • /
    • pp.459-469
    • /
    • 2011
  • There are various factors for determining object shape, such as size, slope and its direction, curvature, length, surface, angles between lines or planes, distribution of the model key points, and so on. Most of the object description and recognition methods are for the 2D space not for the 3D object space where the objects actually exist. In this study, 3D chain code operator, which is basically extension of 2D chain code, was proposed for object description and analysis in 3D space. Results show that the sequence of the 3D chain codes could be basis of a top-down approach for object recognition and modeling. In addition, the proposed method could be applicable to segment point cloud data such as LiDAR data.

Estimation of the Reach-average Velocity of Mountain Streams Using Dye Tracing (염료추적자법을 이용한 산지하천의 구간 평균 유속 추정)

  • Tae-Hyun Kim;Jeman Lee;Chulwon Lee;Sangjun Im
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.374-381
    • /
    • 2023
  • The travel time of flash floods along mountain streams is mainly governed by reach-average velocity, rather than by the point velocity of the locations of interest. Reach-average velocity is influenced by various factors such as stream geometry, streambed materials, and the hydraulic roughness of streams. In this study, the reach-average velocity in mountain streams was measured for storm periods using rhodamine dye tracing. The point cloud data obtained from a LiDAR survey was used to extract the average hydraulic roughness height, such as Ra, Rmax, and Rz. The size distribution of the streambed materials (D50, D84) was also considered in the estimation of the roughness height. The field experiments revealed that the reach-average velocities had a significant relationship with flow discharges (v = 0.5499Q0.6165 ), with an R2 value of 0.77. The root mean square error in the roughness height of the Ra-based estimation (0.45) was lower than those of the other estimations (0.47-1.04). Among the parameters for roughness height estimation, the Ra -based roughness height was the most reliable and suitable for developing the reach-average velocity equation for estimating the travel time of flood waves in mountain streams.

Effect of Learning Data on the Semantic Segmentation of Railroad Tunnel Using Deep Learning (딥러닝을 활용한 철도 터널 객체 분할에 학습 데이터가 미치는 영향)

  • Ryu, Young-Moo;Kim, Byung-Kyu;Park, Jeongjun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.107-118
    • /
    • 2021
  • Scan-to-BIM can be precisely mod eled by measuring structures with Light Detection And Ranging (LiDAR) and build ing a 3D BIM (Building Information Modeling) model based on it, but has a limitation in that it consumes a lot of manpower, time, and cost. To overcome these limitations, studies are being conducted to perform semantic segmentation of 3D point cloud data applying deep learning algorithms, but studies on how segmentation result changes depending on learning data are insufficient. In this study, a parametric study was conducted to determine how the size and track type of railroad tunnels constituting learning data affect the semantic segmentation of railroad tunnels through deep learning. As a result of the parametric study, the similar size of the tunnels used for learning and testing, the higher segmentation accuracy, and the better results when learning through a double-track tunnel than a single-line tunnel. In addition, when the training data is composed of two or more tunnels, overall accuracy (OA) and mean intersection over union (MIoU) increased by 10% to 50%, it has been confirmed that various configurations of learning data can contribute to efficient learning.

Update of Digital Map by using The Terrestrial LiDAR Data and Modified RANSAC (수정된 RANSAC 알고리즘과 지상라이다 데이터를 이용한 수치지도 건물레이어 갱신)

  • Kim, Sang Min;Jung, Jae Hoon;Lee, Jae Bin;Heo, Joon;Hong, Sung Chul;Cho, Hyoung Sig
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.3-11
    • /
    • 2014
  • Recently, rapid urbanization has necessitated continuous updates in digital map to provide the latest and accurate information for users. However, conventional aerial photogrammetry has some restrictions on periodic updates of small areas due to high cost, and as-built drawing also brings some problems with maintaining quality. Alternatively, this paper proposes a scheme for efficient and accurate update of digital map using point cloud data acquired by Terrestrial Laser Scanner (TLS). Initially, from the whole point cloud data, the building sides are extracted and projected onto a 2D image to trace out the 2D building footprints. In order to register the footprint extractions on the digital map, 2D Affine model is used. For Affine parameter estimation, the centroids of each footprint groups are randomly chosen and matched by means of a modified RANSAC algorithm. Based on proposed algorithm, the experimental results showed that it is possible to renew digital map using building footprint extracted from TLS data.

Design of a Mapping Framework on Image Correction and Point Cloud Data for Spatial Reconstruction of Digital Twin with an Autonomous Surface Vehicle (무인수상선의 디지털 트윈 공간 재구성을 위한 이미지 보정 및 점군데이터 간의 매핑 프레임워크 설계)

  • Suhyeon Heo;Minju Kang;Jinwoo Choi;Jeonghong Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.3
    • /
    • pp.143-151
    • /
    • 2024
  • In this study, we present a mapping framework for 3D spatial reconstruction of digital twin model using navigation and perception sensors mounted on an Autonomous Surface Vehicle (ASV). For improving the level of realism of digital twin models, 3D spatial information should be reconstructed as a digitalized spatial model and integrated with the components and system models of the ASV. In particular, for the 3D spatial reconstruction, color and 3D point cloud data which acquired from a camera and a LiDAR sensors corresponding to the navigation information at the specific time are required to map without minimizing the noise. To ensure clear and accurate reconstruction of the acquired data in the proposed mapping framework, a image preprocessing was designed to enhance the brightness of low-light images, and a preprocessing for 3D point cloud data was included to filter out unnecessary data. Subsequently, a point matching process between consecutive 3D point cloud data was conducted using the Generalized Iterative Closest Point (G-ICP) approach, and the color information was mapped with the matched 3D point cloud data. The feasibility of the proposed mapping framework was validated through a field data set acquired from field experiments in a inland water environment, and its results were described.

Semantic SLAM & Navigation Based on Sensor Fusion (센서융합 기반 의미론적 SLAM 및 내비게이션)

  • Gihyeon Lee;Seung-hyun Ahn;Suhyeon Sin;Hyesun Ryu;Yuna Hong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.848-849
    • /
    • 2023
  • 본 논문은 로봇의 실내 환경에서의 자율성을 높이기 위한 SLAM과 내비게이션 방법을 제시한다. 2D LiDAR와 카메라를 이용하여 위치를 인식하고 사람과 장애물을 의미론적으로 검출하며, ICP와 RTAB-map, YOLOv3를 통합하여 Semantic Map을 생성하고 실내 환경에서 자율성을 유지한다. 이 연구를 통해 로봇이 복잡한 환경에서도 높은 수준의 자율성을 유지할 수 있는지 확인하고자 한다.

Considerations for Developing a SLAM System for Real-time Remote Scanning of Building Facilities (건축물 실시간 원격 스캔을 위한 SLAM 시스템 개발 시 고려사항)

  • Kang, Tae-Wook
    • Journal of KIBIM
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • In managing building facilities, spatial information is the basic data for decision making. However, the method of acquiring spatial information is not easy. In many cases, the site and drawings are often different due to changes in facilities and time after construction. In this case, the site data should be scanned to obtain spatial information. The scan data actually contains spatial information, which is a great help in making space related decisions. However, to obtain scan data, an expensive LiDAR (Light Detection and Ranging) device must be purchased, and special software for processing data obtained from the device must be available.Recently, SLAM (Simultaneous localization and mapping), an advanced map generation technology, has been spreading in the field of robotics. Using SLAM, 3D spatial information can be obtained quickly in real time without a separate matching process. This study develops and tests whether SLAM technology can be used to obtain spatial information for facility management. This draws considerations for developing a SLAM device for real-time remote scanning for facility management. However, this study focuses on the system development method that acquires spatial information necessary for facility management through SLAM technology. To this end, we develop a prototype, analyze the pros and cons, and then suggest considerations for developing a SLAM system.

3D Multi-floor Precision Mapping and Localization for Indoor Autonomous Robots (실내 자율주행 로봇을 위한 3차원 다층 정밀 지도 구축 및 위치 추정 알고리즘)

  • Kang, Gyuree;Lee, Daegyu;Shim, Hyunchul
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.25-31
    • /
    • 2022
  • Moving among multiple floors is one of the most challenging tasks for indoor autonomous robots. Most of the previous researches for indoor mapping and localization have focused on singular floor environment. In this paper, we present an algorithm that creates a multi-floor map using 3D point cloud. We implement localization within the multi-floor map using a LiDAR and an IMU. Our algorithm builds a multi-floor map by constructing a single-floor map using a LOAM-based algorithm, and stacking them through global registration that aligns the common sections in the map of each floor. The localization in the multi-floor map was performed by adding the height information to the NDT (Normal Distribution Transform)-based registration method. The mean error of the multi-floor map showed 0.29 m and 0.43 m errors in the x, and y-axis, respectively. In addition, the mean error of yaw was 1.00°, and the error rate of height was 0.063. The real-world test for localization was performed on the third floor. It showed the mean square error of 0.116 m, and the average differential time of 0.01 sec. This study will be able to help indoor autonomous robots to operate on multiple floors.