• Title/Summary/Keyword: 3D LIDAR

Search Result 141, Processing Time 0.026 seconds

Study of a Method for Measuring Hydrogen Gas Concentration Using a Photon-counting Raman Lidar System (광 계수 방식의 라만 라이다 시스템을 이용한 원격 수소 가스 농도 계측 방법에 대한 연구)

  • Choi, In Young;Baik, Sung Hoon;Cha, Jung Ho;Kim, Jin Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.3
    • /
    • pp.114-119
    • /
    • 2019
  • This paper discusses the development of a Raman lidar system for remote detection and measurement of hydrogen gas by using a photon counter. The Raman signal of the hydrogen gas is very weak and has a very low signal-to-noise ratio. The photon counter has the advantage of improving the signal-to-noise ratio, because it has a discriminator to eliminate the background noise from the Raman signal of the hydrogen gas. Therefore, a small and portable Raman lidar system was developed using a low-power pulsed laser and a photon-counter system to measure the hydrogen gas concentration remotely. To verify the capability of measuring hydrogen gas using the developed photon-counting Raman lidar system, experiments were carried out using a gas chamber in which it is possible to adjust the hydrogen gas concentration. As a result, our photon-counting Raman lidar system is seen to measure a minimum concentration of 0.65 vol.% hydrogen gas at a distance of 10 m.

Fabrication of Three-Dimensional Scanning System for Inspection of Massive Sinkhole Disaster Sites (대형 싱크홀 재난 현장 조사용 3차원 형상화 장비 구현)

  • Kim, Soolo;Yoon, Ho-Geun;Kim, Sang-Wook
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.341-349
    • /
    • 2020
  • Recently, interest in ground subsidence in urban areas has increased after a large sinkhole occurred near the high-story building area in Jamsil, Seoul, Korea, in 2014. If a massive sinkhole occurs in an urban area, it is crucial to assess its risk rapidly. Access to humans for on-site safety diagnosis may be difficult because of the additional risk of collapse in the disaster area. Generally, inspection using drones equipped with high-speed lidar sensors can be utilized. However, if the sinkhole is created vertically to a depth of 100 m, similar to the sinkhole in Guatemala, the drone cannot be applied because of the wireless communication limit and turbulence inside the sinkhole. In this study, a three-dimensional (3D) scanning system was fabricated and operated using a towed cable in a massive vertical sinkhole to a depth of 200 m. A high-speed lidar sensor was used to obtain a continuous cross-sectional shape at a certain depth. An inertial-measuring unit was applied to compensate for the error owing to the rotation and pendulum movement of the measuring unit. A reconstruction algorithm, including the compensation scheme, was developed. In a vertical hole with a depth of 180 m in the mining area, the fabricated system was applied to scan 0-165 m depth. The reconstructed shape was depicted in a 3D graph.

A Region Based Approach to Surface Segmentation using LIDAR Data and Images

  • Moon, Ji-Young;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.575-583
    • /
    • 2007
  • Surface segmentation aims to represent the terrain as a set of bounded and analytically defined surface patches. Many previous segmentation methods have been developed to extract planar patches from LIDAR data for building extraction. However, most of them were not fully satisfactory for more general applications in terms of the degree of automation and the quality of the segmentation results. This is mainly caused from the limited information derived from LIDAR data. The purpose of this study is thus to develop an automatic method to perform surface segmentation by combining not only LIDAR data but also images. A region-based method is proposed to generate a set of planar patches by grouping LIDAR points. The grouping criteria are based on both the coordinates of the points and the corresponding intensity values computed from the images. This method has been applied to urban data and the segmentation results are compared with the reference data acquired by manual segmentation. 76% of the test area is correctly segmented. Under-segmentation is rarely founded but over-segmentation still exists. If the over-segmentation is mitigated by merging adjacent patches with similar properties as a post-process, the proposed segmentation method can be effectively utilized for a reliable intermediate process toward automatic extraction of 3D model of the real world.

Numerical Modeling of a Short-range Three-dimensional Flash LIDAR System Operating in a Scattering Atmosphere Based on the Monte Carlo Radiative Transfer Matrix Method (몬테 카를로 복사 전달 행렬 방법을 사용한 산란 대기에서 동작하는 단거리 3차원 플래시 라이다 시스템의 수치적 모델링)

  • An, Haechan;Na, Jeongkyun;Jeong, Yoonchan
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.2
    • /
    • pp.59-70
    • /
    • 2020
  • We discuss a modified numerical model based on the Monte Carlo radiative transfer (MCRT) method, i.e., the MCRT matrix method, for the analysis of atmospheric scattering effects in three-dimensional flash LIDAR systems. Based on the MCRT method, the radiative transfer function for a LIDAR signal is constructed in a form of a matrix, which corresponds to the characteristic response. Exploiting the superposition and convolution of the characteristic response matrices under the paraxial approximation, an extended computer simulation model of an overall flash LIDAR system is developed. The MCRT matrix method substantially reduces the number of tracking signals, which may grow excessively in the case of conventional Monte Carlo methods. Consequently, it can readily yield fast acquisition of the signal response under various scattering conditions and LIDAR-system configurations. Using the computational model based on the MCRT matrix method, we carry out numerical simulations of a three-dimensional flash LIDAR system operating under different atmospheric conditions, varying the scattering coefficient in terms of visible distance. We numerically analyze various phenomena caused by scattering effects in this system, such as degradation of the signal-to-noise ratio, glitches, and spatiotemporal spread and time delay of the LIDAR signals. The MCRT matrix method is expected to be very effective in analyzing a variety of LIDAR systems, including flash LIDAR systems for autonomous driving.

Development of Highly Sensitive SWIR Photodetectors based on MAPI-capped PbS QDs (MAPI 리간드 치환형 PbS 양자점 기반의 고감도 단파장 적외선 광 검출기 개발)

  • Suji Choi;JinBeom Kwon;Yuntae Ha;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.93-97
    • /
    • 2024
  • With the development of promising future mobility and urban air mobility (UAM) technologies, the demand for LIDAR sensors has increased. The SWIR photodetector is a sensor that detects lasers for the 3D mapping of lidar sensor and is the most important technology of LIDAR sensor. An SWIR photodetector based on QDs in an eye-safe wavelength band of over 1400 nm has been reported. QDs-based SWIR photodetectors can be synthesized and processed through a solution process and have the advantages of low cost and simple processing. However, the organic ligands of QDs have insulating properties that limit their ability to improve the sensitivity and stability of photodetectors. Therefore, the technology to replace organic ligands with inorganic ligands must be developed. In this study, the organic ligand of the synthesized PbS QDs was replaced with a MAPI inorganic ligand, and an SWIR photodetector was fabricated. The analysis of the characteristics of the manufactured photodetector confirmed that the photodetector based on MAPI-capped PbS QDs exhibited up to 26.5% higher responsivity than that based on organic ligand PbS QDs.

Analysis of Eye-safe LIDAR Signal under Various Measurement Environments and Reflection Conditions (다양한 측정 환경 및 반사 조건에 대한 시각안전 LIDAR 신호 분석)

  • Han, Mun Hyun;Choi, Gyu Dong;Seo, Hong Seok;Mheen, Bong Ki
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.5
    • /
    • pp.204-214
    • /
    • 2018
  • Since LIDAR is advantageous for accurate information acquisition and realization of a high-resolution 3D image based on characteristics that can be precisely measured, it is essential to autonomous navigation systems that require acquisition and judgment of accurate peripheral information without user intervention. Recently, as an autonomous navigation system applying LIDAR has been utilized in human living space, it is necessary to solve the eye-safety problem, and to make reliable judgment through accurate obstacle recognition in various environments. In this paper, we construct a single-shot LIDAR system (SSLs) using a 1550-nm eye-safe light source, and report the analysis method and results of LIDAR signals for various measurement environments, reflective materials, and material angles. We analyze the signals of materials with different reflectance in each measurement environment by using a 5% Al reflector and a building wall located at a distance of 25 m, under indoor, daytime, and nighttime conditions. In addition, signal analysis of the angle change of the material is carried out, considering actual obstacles at various angles. This signal analysis has the merit of possibly confirming the correlation between measurement environment, reflection conditions, and LIDAR signal, by using the SNR to determine the reliability of the received information, and the timing jitter, which is an index of the accuracy of the distance information.

Efficient Rendering Method for Constructing Virtual Environment using Large-Scale Terrain Data (가상환경구축을 위한 대용량 지형 데이터의 효율적인 렌더링 기법)

  • Kim, Yun-Jin;Shin, Byeong-Seok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11a
    • /
    • pp.739-741
    • /
    • 2005
  • 컴퓨터 게임 지리정보시스템(GIS), 가상현실 분야 등에서 환경 표현의 기반이 되는 지형 렌더링 기술은 매우 중요하다. 최근 LIDAR와 같은 3D 스캐닝 기술은 보다 정밀하고 정확한 지형 데이터를 제공한다. 하지만, 실시간 렌더링을 위해 사용되는 대부분의 방법들이 DEM이나 DTED와 같은 정규격자(uniform grid) 데이터에 최적화 되어 있기 때문에, LIDAR 데이터와 같은 비정규 데이터에는 적합하지 않다. 또한 방대한 LIDAR 데이터는 일반 PC에서 처리가 쉽지 않다. 본 논문에서는 대용량 비정규 데이터에서의 빠르고 효율적인 렌더링 방법을 제안한다. 샘플 데이터의 공간적 분포에 따라 정규격자를 생성하고, 이 격자에 맞도록 LIDAR 데이터를 재샘플링(resampling)하여 DTED와 같은 형태로 변환한다. 기하 재구성된 데이터에 연속적인 상세단계(CLOD)기반의 쿼드트리 알고리듬을 적용하여 지형을 효율적으로 렌더링한다.

  • PDF

GENERATION OF AIRBORNE LIDAR INTENSITY IMAGE BY NORMALIZAING RANGE DIFFERENCES

  • Shin, Jung-Il;Yoon, Jong-Suk;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.504-507
    • /
    • 2006
  • Airborn Lidar technology has been applied to diverse applications with the advantages of accurate 3D information. Further, Lidar intensity, backscattered signal power, can provid us additional information regarding target's characteristics. Lidar intensity varies by the target reflectance, moisture condition, range, and viewing geometry. This study purposes to generate normalized airborne LiDAR intensity image considering those influential factors such as reflectance, range and geometric/topographic factors (scan angle, ground height, aspect, slope, local incidence angle: LIA). Laser points from one flight line were extracted to simplify the geometric conditions. Laser intensities of sample plots, selected by using a set of reference data and ground survey, werethen statistically analyzed with independent variables. Target reflectance, range between sensor and target, and surface slope were main factors to influence the laser intensity. Intensity of laser points was initially normalized by removing range effect only. However, microsite topographic factor, such as slope angle, was not normalized due to difficulty of automatic calculation.

  • PDF

Valve Modeling and Model Extraction on 3D Point Cloud data (잡음이 있는 3차원 점군 데이터에서 밸브 모델링 및 모델 추출)

  • Oh, Ki Won;Choi, Kang Sun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.77-86
    • /
    • 2015
  • It is difficult to extract small valve automatically in noisy 3D point cloud obtained from LIDAR because small object is affected by noise considerably. In this paper, we assume that the valve is a complex model consisting of torus, cylinder and plane represents handle, rib and center plane to extract a pose of the valve. And to extract the pose, we received additional input: center of the valve. We generated histogram of distance between the center and each points of point cloud, and obtain pose of valve by extracting parameters of handle, rib and center plane. Finally, the valve is reconstructed.