• Title/Summary/Keyword: 3D Indoor Environment

Search Result 144, Processing Time 0.027 seconds

Evaluating the Feasibility of a Ground Source Heat pump System for an Elderly Care Center through Simulation Approach (시뮬레이션을 통한 노인 요양 시설의 지열 히트펌프 시스템 적용 가능성 평가)

  • Byonghu Sohn;Young-Sun Kim;Seung-Eon Lee
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.4
    • /
    • pp.39-52
    • /
    • 2023
  • This study analyzes the energy performance of a elderly care center building and the applicability of a ground source heat pump (GSHP) system through simulation approach. For this purpose, a building information modeling (BIM) program and an energy performance calculation program were used. The impact of the mechanical ventilation system on the energy requirements of the heating and cooling system and the indoor environment was also analyzed, focusing on the change in indoor carbon dioxide (CO2) concentration, which is a representative indicator of the indoor environment (air quality). The simulation results showed that the target building exceeds Level 7 in terms of simulated primary energy consumption or actual energy consumption. In addition, it was analyzed that the target building could not maintain the indoor CO2 concentration below the standard concentration by natural ventilation through window opening alone. Combining the GSHP system with the mechanical ventilation system (Case B and Case C) can further reduce the overall energy consumption by reducing the amount of outdoor air introduced by opening windows. The cost savings compared to the baseline case are estimated to be 67.3% for Case A, 63.7% for Case B, 65.5% for Case C, and 42.5% for Case D. It is necessary to analyze the impact of various renewable energy technologies and passive ones on the energy performance and indoor environment of elderly care centers.

Development of a 3D simulator for optimal path generation of a mobile multiped robot (다족 모바일 로봇의 최적 경로 생성을 위한 3D 시뮬레이터의 개발)

  • Kim, Ki-Woo;Choi, Woo-Chang;Yoo, Young-Kuk;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.79-80
    • /
    • 2007
  • This paper deals with generating multi-ped mobile robot's optimal path and its simulation. The multi-ped robot has six-legs which make it possible to move actively by attached driving wheel at the end of legs. The simulation environment is created similarly to the indoor environment as simple obstacles and walls. Also simulator can reconstruct an simulation environment. In this paper, the suggested simulator can generate the optimal path from starting point to destination by applying the A* algorithm and Bug2 algorithm. Then it is possible to check algorithms as 3D screen and we can simulate under the generated path.

  • PDF

Photorealistic Real-Time Dense 3D Mesh Mapping for AUV (자율 수중 로봇을 위한 사실적인 실시간 고밀도 3차원 Mesh 지도 작성)

  • Jungwoo Lee;Younggun Cho
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.188-195
    • /
    • 2024
  • This paper proposes a photorealistic real-time dense 3D mapping system that utilizes a neural network-based image enhancement method and mesh-based map representation. Due to the characteristics of the underwater environment, where problems such as hazing and low contrast occur, it is hard to apply conventional simultaneous localization and mapping (SLAM) methods. At the same time, the behavior of Autonomous Underwater Vehicle (AUV) is computationally constrained. In this paper, we utilize a neural network-based image enhancement method to improve pose estimation and mapping quality and apply a sliding window-based mesh expansion method to enable lightweight, fast, and photorealistic mapping. To validate our results, we utilize real-world and indoor synthetic datasets. We performed qualitative validation with the real-world dataset and quantitative validation by modeling images from the indoor synthetic dataset as underwater scenes.

The Effect of Indoor Temperature Change on Human Physiology for Comfort Control during Sleep Early Stage (쾌적제어를 위한 수면 초기 실내온도 변동이 인체 생리에 미치는 영향)

  • Shin, H.J.;Kim, D.G.;Jeong, S.K.;Kum, J.S.;Kim, H.C.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.29-34
    • /
    • 2007
  • Existent researches about indoor thermal environment have been focused on to seek human's comfort in daytime. Also researches about thermal comfort during the sleeping time that is important for resting and recharging to modern people have been seldom existed. At present, as global warming phenomenon is being continued, most people are going through inconvenience by sultriness during the sleeping hours in sweltering summer night. Therefore we need another control method of an air conditioner to keep human's thermal comfort. Ambient temperature is a common factor of the environment, but analysis of its effect on human body physiology is still unknown. The effect of ambient temperature on human sleep has been increasingly studied in the last decade. This research investigated about optimal indoor temperature to maintain proper skin temperature and comfortable sleep when indoor air is cooled by an air conditioner in sweltering summer night.

  • PDF

Improved Georeferencing of a Wearable Indoor Mapping System Using NDT and Sensor Integration

  • Do, Linh Giang;Kim, Changjae;Kim, Han Sae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.425-433
    • /
    • 2020
  • Three-dimensional data has been used for different applications such as robotics, building reconstruction, and so on. 3D data can be generated from an optical camera or a laser scanner. Especially, a wearable multi-sensor system including the above-mentioned sensors is an optimized structure that can overcome the drawbacks of each sensor. After finding the geometric relationships between sensors, georeferencing of the datasets acquired from the moving system, should be carried out. Especially, in an indoor environment, error propagation always causes problem in the georeferencing process. To improve the accuracy of this process, other sources of data were used to combine with LiDAR (Light Detection and Ranging) data, and various registration methods were also tested to find the most suitable way. More specifically, this paper proposed a new process of NDT (Normal Distribution Transform) to register the LiDAR point cloud, with additional information from other sensors. For real experiment, a wearable mapping system was used to acquire datasets in an indoor environment. The results showed that applying the new process of NDT and combining LiDAR data with IMU (Inertial Measurement Unit) information achieved the best result with the RMSE 0.063 m.

A Method of Representing Sensors in 3D Virtual Environments (3D 가상공간에서의 센서 표현 방법)

  • Im, Chang Hyuk;Lee, Myeong Won
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.4
    • /
    • pp.11-20
    • /
    • 2018
  • Applications about systems integration of sensors and virtual environments have been developed increasingly. Accordingly, there is a need for the ability to represent, control, and manage physical sensors directly in a 3D virtual environment. In this research, a method of representing physical sensor devices in a 3D virtual environment has been defined using mixed and augmented reality, including virtual and real worlds, where sensors and virtual objects co-exist. The research is intended to control and manage various physical sensors through data sharing and interchange between heterogeneous computing environments. In order to achieve this, general sensor types have been classified, and a sensor based 3D scene graph for representing the functions of sensors has been defined. In addition, a sensor data model has been defined using the scene graph. Finally, a sensor 3D viewer has been implemented based on the scene graph and the data model so as to simulate the functions of sensors in indoor and outdoor 3D environments.

A 2D / 3D Map Modeling of Indoor Environment (실내환경에서의 2 차원/ 3 차원 Map Modeling 제작기법)

  • Jo, Sang-Woo;Park, Jin-Woo;Kwon, Yong-Moo;Ahn, Sang-Chul
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.355-361
    • /
    • 2006
  • In large scale environments like airport, museum, large warehouse and department store, autonomous mobile robots will play an important role in security and surveillance tasks. Robotic security guards will give the surveyed information of large scale environments and communicate with human operator with that kind of data such as if there is an object or not and a window is open. Both for visualization of information and as human machine interface for remote control, a 3D model can give much more useful information than the typical 2D maps used in many robotic applications today. It is easier to understandable and makes user feel like being in a location of robot so that user could interact with robot more naturally in a remote circumstance and see structures such as windows and doors that cannot be seen in a 2D model. In this paper we present our simple and easy to use method to obtain a 3D textured model. For expression of reality, we need to integrate the 3D models and real scenes. Most of other cases of 3D modeling method consist of two data acquisition devices. One for getting a 3D model and another for obtaining realistic textures. In this case, the former device would be 2D laser range-finder and the latter device would be common camera. Our algorithm consists of building a measurement-based 2D metric map which is acquired by laser range-finder, texture acquisition/stitching and texture-mapping to corresponding 3D model. The algorithm is implemented with laser sensor for obtaining 2D/3D metric map and two cameras for gathering texture. Our geometric 3D model consists of planes that model the floor and walls. The geometry of the planes is extracted from the 2D metric map data. Textures for the floor and walls are generated from the images captured by two 1394 cameras which have wide Field of View angle. Image stitching and image cutting process is used to generate textured images for corresponding with a 3D model. The algorithm is applied to 2 cases which are corridor and space that has the four wall like room of building. The generated 3D map model of indoor environment is shown with VRML format and can be viewed in a web browser with a VRML plug-in. The proposed algorithm can be applied to 3D model-based remote surveillance system through WWW.

  • PDF

The 3 Dimensional Triangulation Scheme based on the Space Segmentation in WPAN

  • Lee, Dong Myung;Lee, Ho Chul
    • Journal of Engineering Education Research
    • /
    • v.15 no.5
    • /
    • pp.93-97
    • /
    • 2012
  • Most of ubiquitous computing devices such as stereo camera, ultrasonic sensor based MIT cricket system and other wireless sensor network devices are widely applied to the 2 Dimensional(2D) localization system in today. Because stereo camera cannot estimate the optimal location between moving node and beacon node in Wireless Personal Area Network(WPAN) under Non Line Of Sight(NLOS) environment, it is a great weakness point to the design of the 2D localization system in indoor environment. But the conventional 2D triangulation scheme that is adapted to the MIT cricket system cannot estimate the 3 Dimensional(3D) coordinate values for estimation of the optimal location of the moving node generally. Therefore, the 3D triangulation scheme based on the space segmentation in WPAN is suggested in this paper. The measuring data in the suggested scheme by computer simulation is compared with that of the geographic measuring data in the AutoCAD software system. The average error of coordinates values(x,y,z) of the moving node is calculated to 0.008m by the suggested scheme. From the results, it can be seen that the location correctness of the suggested scheme is very excellent for using the localization system in WPAN.

Development of a LonRF Intelligent Device-based Ubiquitous Home Network Testbed (LonRF 지능형 디바이스 기반의 유비쿼터스 홈네트워크 테스트베드 개발)

  • 이병복;박애순;김대식;노광현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.6
    • /
    • pp.566-573
    • /
    • 2004
  • This paper describes the ubiquitous home network (uHome-net) testbed and LonRF intelligent devices based on LonWorks technology. These devices consist of Neuron Chip, RF transceiver, sensor, and other peripheral components. Using LonRF devices, a home control network can be simplified and most devices can be operated on LonWorks control network. Also, Indoor Positioning System (IPS) that can serve various location based services was implemented in uHome-net. Smart Badge of IPS, that is a special LonRF device, can measure the 3D location of objects in the indoor environment. In the uHome-net testbed, remote control service, cooking help service, wireless remote metering service, baby monitoring service and security & fire prevention service were realized. This research shows the vision of the ubiquitous home network that will be emerged in the near future.

A Study on Environmental Standards of School Building (교사환경기준에 관한 연구)

  • Hong, Seok-Pyo;Park, Young-Soo
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.1 no.1
    • /
    • pp.11-43
    • /
    • 2000
  • The purpose of this study was, through analyzing the previous researches, to grasp the present status of environment of school building(ESB), research the sundry records of each element and, through comparative analysis of the standard of ESB in Korea, the United States, and Japan, select the normative standard of ESB, to clarify the point at issue presented in Regulation of Construction & facility Management for Elementary and and Secondary School in Korea, and to suggest an alternative preliminary standard of ESB. To carry out a research for this purpose, these were required: 1. to investigate the existing present status of ESB, 2. to make a comparative analysis of the standard of ESB in each country, 3. to suggest the normative standard of preliminary standard of ESB, 4. to analyze the controversial points of the standard of ESB in Korea, 5. to suggest an alternative preliminary standard of ESB. The conclusions were as follows: 1. Putting, through analyzing the previous researches, the existing present status of ESB together, it seemed that lighting environment, indoor air environment and noise environment were all in poor conditions. 2. In the result of a comparative analysis of the standard of ESB in Korea, Japan and the United States, in Korea the factors of each lighting and indoor air environment were not presented properly, in Japan, in lighting environment aspect, the standard on natural lighting and the factors on brightness were not presented., and in the USA the essential factors of each environment were throughly presented. In the comparison of the standards on each factor, Korea showed that the standard level presented was less properly prescribed than those of the USA and Japan but it also showed that the standard levels prescribed in the USA and in Japan were mostly similar to the standard levels in records investigated. 3. With the result of the normative standard selection on School Builiding environment factor of prescribed in this study, the controversial points of the standard of ESB in Korea were analyzed and the result was utilized to suggest new preliminary standard of ESB. 4. As the result of the analysis of the controversial points of the standard of ESB in Korea, it was found that the standard of ESB in Korea should be established on a basis of School Health Act and be concretely presented in School Health Regulation and School Health Rule. The factors of each environment was improperly presented in the existing standard of ESB in Korea. Moreover the standard of them was inferior to that of the records investigated and those of in the USA and in Japan and it also showed that the standard of it in Korea was improper to maintain Comfortable Learning Environment. 5. A suggested preliminary standard of ESB acquired through above study as follows: 1) In this study a new kind of preliminary standard of ESB is divided into lighting environment, indoor air environment, noise environment, odor environment and for above classification, reasonable factor and standard should be established and the controling way on each standard and countermeasures against it should be considered. 2) In lighting environment, the factors of natural lighting are divided into daylight rate, brightness, glare. In the standard on each factor, daylight rate should secure 5% of a mean daylight rate and 2% of a minimum daylight rate, brightness ratio of maximum illumination to minimum illumination should be under 10:1, and in glare there should not be an occurrence factor from a reflector outside of the classroom. And the factors of unnatural lighting are illumination, brightness, and glare. In the standard on each factor, illumination should be 750 lux or more, brightness ratio should be under 3 to 1, and glare should not occur. And Optimal reflection rate(%) of Colors and Facilities of Classroom which influences lighting environment should be considered. 3) In indoor air environment factors, thermal factors are divided into (1) room temperature, (2) relative humidity, (3) room air movement, (4) radiation heat, and harmful gases (5) CO, (6) $CO_2$ that are proceeded from using the heating fuel such as oval briquettes, firewood, charcoal being used in most of the classroom, and finally (7) dust. In the standard on each factor, the next are necessary; room temperature: $16^{\circ}C{\sim}26^{\circ}C$(summer : $E.T18.9{\sim}23.8^{\circ}C$, winter: $E.T16.7{\sim}21.7^{\circ}C$), relative humidity: $30{\sim}80%$, room air movement: under 0.5m/sec, radiation heat: under $5^{\circ}C$ gap between dry-bulb temperature and wet-bulb temperature, below 1000 ppm of ca and below 10ppm of $CO_2$, dust: below 0.10 $mg/m^3$ of Volume of dust in indoor air, and ventilation standard($CO_2$) for purification of indoor air : once/6 min.(about 7 times/40 min.) in an airtight classroom. 4) In the standard on noise environment, noise level should be under 40 dB(A) and the noise measuring way and the countermeasures against it should be considered. 5) In the standard on odor environment, odor level under Physical Method should be under 2 degrees, and the inspecting way and the countermeasures against it should be considered.

  • PDF