• Title/Summary/Keyword: 3D Imaging

Search Result 1,516, Processing Time 0.026 seconds

A Comparison of 3D Reconstruction through the Passive and Pseudo-Active Acquisition of Images (수동 및 반자동 영상획득을 통한 3차원 공간복원의 비교)

  • Jeona, MiJeong;Kim, DuBeom;Chai, YoungHo
    • Journal of Broadcast Engineering
    • /
    • v.21 no.1
    • /
    • pp.3-10
    • /
    • 2016
  • In this paper, two reconstructed point cloud sets with the information of 3D features are analyzed. For a certain 3D reconstruction of the interior of a building, the first image set is taken from the sequential passive camera movement along the regular grid path and the second set is from the application of the laser scanning process. Matched key points over all images are obtained by the SIFT(Scale Invariant Feature Transformation) algorithm and are used for the registration of the point cloud data. The obtained results are point cloud number, average density of point cloud and the generating time for point cloud. Experimental results show the necessity of images from the additional sensors as well as the images from the camera for the more accurate 3D reconstruction of the interior of a building.

Accuracy of virtual 3-dimensional cephalometric images constructed with 2-dimensional cephalograms using the biplanar radiography principle

  • Lee, Jae-Seo;Kim, Sang-Rok;Hwang, Hyeon-Shik;Lee, Kyungmin Clara
    • Imaging Science in Dentistry
    • /
    • v.51 no.4
    • /
    • pp.407-412
    • /
    • 2021
  • Purpose: The purpose of this study was to evaluate the accuracy of virtual 3-dimensional (3D) cephalograms constructed using the principle of biplanar radiography by comparing them with cone-beam computed tomography (CBCT) images. Materials and Methods: Thirty orthodontic patients were enrolled in this study. Frontal and lateral cephalograms were obtained with the use of a head posture aligner and reconstructed into 3D cephalograms using biplanar radiography software. Thirty-four measurements representing the height, width, depth, and oblique distance were computed in 3 dimensions, and compared with the measurements from the 3D images obtained by CBCT, using the paired t-test and Bland-Altman analysis. Results: Comparison of height, width, depth, and oblique measurements showed no statistically significant differences between the measurements obtained from 3D cephalograms and those from CBCT images (P>0.05). Bland-Altman plots also showed high agreement between the 3D cephalograms and CBCT images. Conclusion: Accurate 3D cephalograms can be constructed using the principle of biplanar radiography if frontal and lateral cephalograms can be obtained with a head posture aligner. Three-dimensional cephalograms generated using biplanar radiography can replace CBCT images taken for diagnostic purposes.

Late reconstruction of extensive orbital floor fracture with a patient-specific implant in a bombing victim

  • Smeets, Maximiliaan;Snel, Robin;Sun, Yi;Dormaar, Titiaan;Politis, Constantinus
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.46 no.5
    • /
    • pp.353-357
    • /
    • 2020
  • Fractures of the orbital floor and walls are among the most frequent maxillofacial fractures. Virtual three-dimensional (3D) planning and use of patient-specific implants (PSIs) could improve anatomic and functional outcomes in orbital reconstruction surgery. The presented case was a victim of a terrorist attack involving improvised explosive devices. This 58-year-old female suffered severe wounds caused by a single piece of metal from a bomb, shattering the left orbital floor and lateral orbital wall. Due to remaining hypotropia of the left eye compared to the right eye, late orbital floor reconstruction was carried out with a personalised 3D printed titanium implant. We concluded that this technique with PSI appears to be a viable method to correct complex orbital floor defects. Our research group noted good aesthetic and functional results one year after surgery. Due to the complexity of the surgery for a major bony defect of the orbital floor, it is important that the surgery be executed by experienced surgeons in the field of maxillofacial traumatology.

Orthoscopic real image reconstruction in integral imaging by modifying coordinate of elemental image (집적영상에서 요소영상의 좌표변환을 이용한 정치실영상 구현)

  • Jang, Jae-young;Cho, Myungjin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1646-1652
    • /
    • 2015
  • In this paper, we propose a depth conversion method for orthoscopic real image reconstruction in integral imaging. Pseudoscopic image has been regarded a problem in conventional integral imaging. the depth of reconstructed image is depending on a coordinate of an elemental image. The conversion from pseudoscopic to orthoscopic may be possible by analysing the geometrical relation between pickup and reconstruction system of elemental image. The feasibility of the proposed method has been confirmed through preliminary experiments as well as ray optical analysis.