• Title/Summary/Keyword: 3D Game Animation

Search Result 134, Processing Time 0.02 seconds

Development of Simulator for Analyzing Intercept Performance of Surface-to-air Missile (지대공미사일 요격 성능 분석 시뮬레이터 개발)

  • Kim, Ki-Hwan;Seo, Yoon-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.63-71
    • /
    • 2010
  • In modern war, Intercept Performance of SAM(Surface to Air Missile) is gaining importance as range and precision of Missile and Guided Weapon on information warfare have been improved. An aerial defence system using Surface-to-air Radar and Guided Missile is needed to be built for prediction and defense from threatening aerial attack. When developing SAM, M&S is used to free from a time limit and a space restriction. M&S is widely applied to education, training, and design of newest Weapon System. This study was conducted to develop simulator for evaluation of Intercept Performance of SAM. In this study, architecture of Intercept Performance of SAM analysis simulator for estimation of Intercept Performance of various SAM was suggested and developed. The developed Intercept Performance of SAM analysis simulator was developed by C++ and Direct3D, and through 3D visualization using the Direct3D, it shows procedures of the simulation on a user animation window. Information about design and operation of Fighting model is entered through input window of the simulator, and simulation engine consisted of Object Manager, Operation Manager, and Integrated Manager conducts modeling and simulation automatically using the information, so the simulator gives user feedback in a short time.

A study about the improvement plan in production processes of digital entertainment image using the motion capture system (모션캡쳐시스템을 활용한 디지털 엔터테인먼트 영상에서 제작과정상 개선 방안에 관한 연구)

  • Lee, Man-Woo;Yun, Deok-Un;Park, Jin-Seok;Kim, Soon-Gohn
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.824-828
    • /
    • 2006
  • Introduction of motion capture system to the field of digital entertainment paved the way to accelerate the development of 3D character animation all the more. Motion capture system has been developed of the level that it can capture the fierce motions of character particularly in the digital game image and improve the dynamic characteristics by capturing the movement of human muscle or express the human's true emotion by capturing wrinkles and expression on face. Such an extension of realistic expression enables them to be used increasingly in movie, TV, advertisement, music video, etc centering around the game industry in the field of digital entertainment. The fact is, however, that many difficulties are held in the image production process compared with the competing countries such as USA and Japan, owing to inferiorities in technical expertise and capital in the image production process using the local motion capture, insufficient professional human resources of motion capture and small size of local motion capture image market. Hence, this study intends to suggest the plan to improve the technical problems in terms of integrated motion capture system, motion capture professional human resources and motion capture in-house program development in the production process of digital entertainment image using the motion capture system by surveying local and overseas examples of image production.

  • PDF

Design and Implementation of an Industrial-Design Collaborative System to Support Scalability (확장성을 고려한 산업디자인 협력시스템 설계 및 구현)

  • Yang, Jin-Mo;Lee, Seung-Ryong;Jeon, Tae-Woong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.6 no.5
    • /
    • pp.513-527
    • /
    • 2000
  • This paper describes our experience to design and implementation of a collaborative system framework that allows to develop certain collaborative applications such as 3D animation, computer game, and industrial design. The collaborative system enables users, who located in geographically long distance, to do collaborative work in a single virtual space. The proposed system basically consists of client and server system. The goal of proposed system is to support scalability, portability, and platform independent. In order to achieve these, the server is implemented in Java platform and is adopted to the hybrid architecture which takes the advantages both in centralized and decentralized collaborative system. We construct the server base on its functional characteristics so called User Manager Server (UMS), Session Manager Server (SMS), and Information Server (IS), The UMS manages the users who are taking part in the collaborative operations. The SMS supports the conferencing in the proposed system. The IS provides the connection methods among the UMSs. For user's convenience, we implement the client using Visual C++ in Windows. We also expend the functions of 3D Studio Max to distributed environment by means of the plug-in module, and facilitate the chatting and white board functions as well.

  • PDF

A Study on the AI Analysis of Crop Area Data in Aquaponics (아쿠아포닉스 환경에서의 작물 면적 데이터 AI 분석 연구)

  • Eun-Young Choi;Hyoun-Sup Lee;Joo Hyoung Cha;Lim-Gun Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.861-866
    • /
    • 2023
  • Unlike conventional smart farms that require chemical fertilizers and large spaces, aquaponics farming, which utilizes the symbiotic relationship between aquatic organisms and crops to grow crops even in abnormal environments such as environmental pollution and climate change, is being actively researched. Different crops require different environments and nutrients for growth, so it is necessary to configure the ratio of aquatic organisms optimized for crop growth. This study proposes a method to measure the degree of growth based on area and volume using image processing techniques in an aquaponics environment. Tilapia, carp, catfish, and lettuce crops, which are aquatic organisms that produce organic matter through excrement, were tested in an aquaponics environment. Through 2D and 3D image analysis of lettuce and real-time data analysis, the growth degree was evaluated using the area and volume information of lettuce. The results of the experiment proved that it is possible to manage cultivation by utilizing the area and volume information of lettuce. It is expected that it will be possible to provide production prediction services to farmers by utilizing aquatic life and growth information. It will also be a starting point for solving problems in the changing agricultural environment.