• 제목/요약/키워드: 3D Finite Element Analysis

검색결과 1,964건 처리시간 0.033초

47ton 굴삭기 주행모터 기어 캐리어의 구조해석에 관한 연구 (A study on Structure Analysis about 47ton Excavator Drive Motor Gear carrier)

  • 정일중;이상훈;이석순
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.724-729
    • /
    • 2007
  • The study is a structure analysis by applying the output torque and tangential force on 47 ton excavator drive motor gear carrier. The finite element analysis for 3D model is performed by ABAQUS/Standard. We made an estimate by evaluating the results of the finite element analysis.

  • PDF

세장비가 큰 다단계 초정밀 사각형 디프드로잉을 위한 블랭크 설계 (Blank Design in Multi-Stage Rectangular Deep Drawing of Extreme Aspect Ratio)

  • 박철성;구태완;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.258-261
    • /
    • 2003
  • In this study, finite element analysis for multi-stage deep drawing process of rectangular configuration with extreme aspect ratio is carried out especially for the blank design. The analysis of rectangular deep drawing process with extreme aspect ratio is likewise very difficult with respect to the design process parameters including the intermediate die profile. In order to solve the difficulties, numerical approach using finite element method is performed in the present analysis and design. A series of experiments for multi-stage rectangular deep drawing process are conducted and the deformed configuration is investigated by comparing with the results of the finite element analysis. Additionally, to minimize amount of removal material after trimming process, finite element simulation is applied for the blank modification. The analysis incorporates brick elements for a rigid-plastic finite element method with an explicit time integration scheme using LS-DYNA3D.

  • PDF

T-형 및 L-형 배관내 반타원 표면균열에서의 구속상태 (Constraint of Semi-elliptical Surface Cracks in T and L-joints)

  • 이형일
    • 대한기계학회논문집A
    • /
    • 제25권9호
    • /
    • pp.1325-1333
    • /
    • 2001
  • Critical defects in pressure vessels and pipes are generally found in the form of a semi-elliptical surface crack, and the analysis of which is consequently an important problem in engineering fracture mechanics. Furthermore, in addition to the traditional single parameter K or J-integral, the second parameter like T-stress should be measured to quantify the constraint effect. In this work, the validity of the line-spring finite element is investigated by comparing line-spring J-T solutions to the reference 3D finite element J-T solutions. A full 3D-mesh generating program for semi-elliptical surface cracks is employed to provide such reference 3D solutions. Then some structural characteristics of the surface-cracked T and L-joints are studied by mixed mode line-spring finite element. Negative T-stresses observed in T and L-joints indicate the necessity of J-T two parameter approach for analyses of surface-cracked T and L-joints.

유한요소법을 이용한 컨버터 변압기 록플레이트 설계 (Design of a lock plate for a converter transformer by finite element method)

  • 김지현;김영만
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.954-956
    • /
    • 2005
  • For transformer designers, eddy current loss calculation of steel structure is required to consider temperature rise on transformers. This study describes design of a lock plate for converter transformers by finite element method. The lock plate may be locally heated by fringing flux due to air-gap. 3D finite element analysis is performed and compared so as to minimize eddy loss on the lock plate with different materials and structures

  • PDF

Large deflection analysis of laminated composite plates using layerwise displacement model

  • Cetkovic, M.;Vuksanovic, Dj.
    • Structural Engineering and Mechanics
    • /
    • 제40권2호
    • /
    • pp.257-277
    • /
    • 2011
  • In this paper the geometrically nonlinear continuum plate finite element model, hitherto not reported in the literature, is developed using the total Lagrange formulation. With the layerwise displacement field of Reddy, nonlinear Green-Lagrange small strain large displacements relations (in the von Karman sense) and linear elastic orthotropic material properties for each lamina, the 3D elasticity equations are reduced to 2D problem and the nonlinear equilibrium integral form is obtained. By performing the linearization on nonlinear integral form and then the discretization on linearized integral form, tangent stiffness matrix is obtained with less manipulation and in more consistent form, compared to the one obtained using laminated element approach. Symmetric tangent stiffness matrixes, together with internal force vector are then utilized in Newton Raphson's method for the numerical solution of nonlinear incremental finite element equilibrium equations. Despite of its complex layer dependent numerical nature, the present model has no shear locking problems, compared to ESL (Equivalent Single Layer) models, or aspect ratio problems, as the 3D finite element may have when analyzing thin plate behavior. The originally coded MATLAB computer program for the finite element solution is used to verify the accuracy of the numerical model, by calculating nonlinear response of plates with different mechanical properties, which are isotropic, orthotropic and anisotropic (cross ply and angle ply), different plate thickness, different boundary conditions and different load direction (unloading/loading). The obtained results are compared with available results from the literature and the linear solutions from the author's previous papers.

Design of Surface-Mounted Permanent Magnet Synchronous Motor Considering Axial Leakage Flux by using 2-Dimensional Finite Element Analysis

  • Lee, Byeong-Hwa;Park, Hyung-Il;Jung, Jae-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2284-2291
    • /
    • 2018
  • This paper deals with optimum design of surface mounted permanent magnet synchronous motor (SPMSM) for automotive component. For a compact system structure, it was designed as a motor with a 14-pole 12-slot concentrated winding and hollow shaft. The motor is a thin type structure which stator outer diameter is relatively large compared to its axial length and is designed to have a high magnetic saturation for increasing the torque density. Since the high magnetic saturation in the stator core increases the axial leakage flux, a 3-dimensional (3-D) finite element analysis (FEA) is indispensable for torque analysis. However, optimum designs using 3-D FEA is inefficient in terms of time and cost. Therefore, equivalent 2-D FEA which is able to consider axial leakage flux is applied to the optimization to overcome the disadvantages of 3-D FEA. The structure for cost reduction is proposed and optimum design using equivalent 2-D FEA has been performed.

환상압연 공정의 실용적 모델링 방법에 관한 연구 (A Study on the Practical Finite Element Modeling Method for Ring Rolling)

  • 이두규;김응주;이용신
    • 소성∙가공
    • /
    • 제24권3호
    • /
    • pp.161-166
    • /
    • 2015
  • The finite element method has been widely used in the analysis of ring rolling. For ring rolling it requires a high computational expense due to the non-steady state material flow characteristics of the process. The high computational expense causes the finite element analysis to be impractical for industrial applications. In the current study, we aim to develop a practical implicit finite element modeling method for ring rolling. This method uses a step-wise steady state assumption and is called the “Stepped method”. The stepped method divides the whole process time of unsteady-state flow model into a finite number of steady-state models. It then solves the process at several specific time steps until convergence is reached. In order to confirm the performance and validity of the newly proposed stepped method, the result from the stepped method were compared to the results from a Lagrangian finite element method and to results from experiments reported in the literature.

3차원 유한요소법에 기초한 조질 압연 공정 해석 - Part I : 유한요소해석 (3D Finite Element-based Study on Skin-pass Rolling - Part I : Finite Element Analysis)

  • 윤성진;황상무
    • 소성∙가공
    • /
    • 제25권2호
    • /
    • pp.130-135
    • /
    • 2016
  • Rolled products often have residual stresses or strip waves that are beyond the customer’s tolerance. To resolve this problem, skin-pass rolling is widely used during post-processing of such products. Because a short contact length compared to the strip width is a characteristic of skin-pass rolling, several numerical analyses have been previously conducted based on a two-dimensional approach. In the current study, a series of simulations was conducted using numerical analysis of three-dimensional elastic-plastic finite element method.

3 차원 유한요소법을 이용한 AISI 304 표면용접평판의 잔류응력해석 (Residual Stress Analysis of AISI 304 Surface Welding Plate by 3D Finite Element Method)

  • 이경수;김태룡;김만원;박재학
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.390-395
    • /
    • 2008
  • This study is performed to understand three dimensional characteristics of weld residual stress for the surface weld on the stainless steel plate. AISI 304 plate with one path weld on the surface was used as a test specimen. Finite element analysis was done to analyze thermal transient and residual stress due to weld. The result of finite element analysis was validated by previous paper and measurement data. Among various techniques for residual stress measurement, instrumented ball indentation method was applied. The calculated residual stresses by finite element analysis showed good agreement with the measured results.

  • PDF

Nonhomogeneous atherosclerotic plaque analysis via enhanced 1D structural models

  • Varello, Alberto;Carrera, Erasmo
    • Smart Structures and Systems
    • /
    • 제13권4호
    • /
    • pp.659-683
    • /
    • 2014
  • The static analysis of structures with arbitrary cross-section geometry and material lamination via a refined one-dimensional (1D) approach is presented in this paper. Higher-order 1D models with a variable order of expansion for the displacement field are developed on the basis of Carrera Unified Formulation (CUF). Classical Euler-Bernoulli and Timoshenko beam theories are obtained as particular cases of the first-order model. Numerical results of displacement, strain and stress are provided by using the finite element method (FEM) along the longitudinal direction for different configurations in excellent agreement with three-dimensional (3D) finite element solutions. In particular, a layered thin-walled cylinder is considered as first assessment with a laminated conventional cross-section. An atherosclerotic plaque is introduced as a typical structure with arbitrary cross-section geometry and studied for both the homogeneous and nonhomogeneous material cases through the 1D variable kinematic models. The analyses highlight limitations of classical beam theories and the importance of higher-order terms in accurately detecting in-plane cross-section deformation without introducing additional numerical problems. Comparisons with 3D finite element solutions prove that 1D CUF provides remarkable three-dimensional accuracy in the analysis of even short and nonhomogeneous structures with arbitrary geometry through a significant reduction in computational cost.