• Title/Summary/Keyword: 3D Feature Vector

Search Result 99, Processing Time 0.056 seconds

A Study on the Performance Enhancement of Radar Target Classification Using the Two-Level Feature Vector Fusion Method

  • Kim, In-Ha;Choi, In-Sik;Chae, Dae-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.206-211
    • /
    • 2018
  • In this paper, we proposed a two-level feature vector fusion technique to improve the performance of target classification. The proposed method combines feature vectors of the early-time region and late-time region in the first-level fusion. In the second-level fusion, we combine the monostatic and bistatic features obtained in the first level. The radar cross section (RCS) of the 3D full-scale model is obtained using the electromagnetic analysis tool FEKO, and then, the feature vector of the target is extracted from it. The feature vector based on the waveform structure is used as the feature vector of the early-time region, while the resonance frequency extracted using the evolutionary programming-based CLEAN algorithm is used as the feature vector of the late-time region. The study results show that the two-level fusion method is better than the one-level fusion method.

A Study on 3D Game Character Grouping using Object Feature Vector (객체 특징 벡터를 이용한 3D 게임 캐릭터 그룹핑에 관한 연구)

  • Park, Chang-Min
    • Journal of Digital Contents Society
    • /
    • v.13 no.3
    • /
    • pp.263-269
    • /
    • 2012
  • Grouping of characters in a 3D game can be very effective to play. An 3D game characters grouping method is proposed using Object Feature vector depending on their characteristics. In the case of NMT, the constitution of pattern is regular and directive. But MT is not. Such characteristic is extracted using Gabor Filter, then character is grouped. Through experiment, we obtain accuracy of more than 80% for grouping method using each feature. Thus, using this property, characters could be grouped effectively and it draws the game more speed and strategic actions as a result.

3D Content Model Hashing Based on Object Feature Vector (객체별 특징 벡터 기반 3D 콘텐츠 모델 해싱)

  • Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.6
    • /
    • pp.75-85
    • /
    • 2010
  • This paper presents a robust 3D model hashing based on object feature vector for 3D content authentication. The proposed 3D model hashing selects the feature objects with highest area in a 3D model with various objects and groups the distances of the normalized vertices in the feature objects. Then we permute groups in each objects by using a permutation key and generate the final binary hash through the binary process with the group coefficients and a random key. Therefore, the hash robustness can be improved by the group coefficient from the distance distribution of vertices in each object group and th hash uniqueness can be improved by the binary process with a permutation key and a random key. From experimental results, we verified that the proposed hashing has both the robustness against various mesh and geometric editing and the uniqueness.

Three-dimensional Face Recognition based on Feature Points Compression and Expansion

  • Yoon, Andy Kyung-yong;Park, Ki-cheul;Park, Sang-min;Oh, Duck-kyo;Cho, Hye-young;Jang, Jung-hyuk;Son, Byounghee
    • Journal of Multimedia Information System
    • /
    • v.6 no.2
    • /
    • pp.91-98
    • /
    • 2019
  • Many researchers have attempted to recognize three-dimensional faces using feature points extracted from two-dimensional facial photographs. However, due to the limit of flat photographs, it is very difficult to recognize faces rotated more than 15 degrees from original feature points extracted from the photographs. As such, it is difficult to create an algorithm to recognize faces in multiple angles. In this paper, it is proposed a new algorithm to recognize three-dimensional face recognition based on feature points extracted from a flat photograph. This method divides into six feature point vector zones on the face. Then, the vector value is compressed and expanded according to the rotation angle of the face to recognize the feature points of the face in a three-dimensional form. For this purpose, the average of the compressibility and the expansion rate of the face data of 100 persons by angle and face zone were obtained, and the face angle was estimated by calculating the distance between the middle of the forehead and the tail of the eye. As a result, very improved recognition performance was obtained at 30 degrees of rotated face angle.

Median Filtering Detection of Digital Images Using Pixel Gradients

  • RHEE, Kang Hyeon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.195-201
    • /
    • 2015
  • For median filtering (MF) detection in altered digital images, this paper presents a new feature vector that is formed from autoregressive (AR) coefficients via an AR model of the gradients between the neighboring row and column lines in an image. Subsequently, the defined 10-D feature vector is trained in a support vector machine (SVM) for MF detection among forged images. The MF classification is compared to the median filter residual (MFR) scheme that had the same 10-D feature vector. In the experiment, three kinds of test items are area under receiver operating characteristic (ROC) curve (AUC), classification ratio, and minimal average decision error. The performance is excellent for unaltered (ORI) or once-altered images, such as $3{\times}3$ average filtering (AVE3), QF=90 JPEG (JPG90), 90% down, and 110% up to scale (DN0.9 and Up1.1) images, versus $3{\times}3$ and $5{\times}5$ median filtering (MF3 and MF5, respectively) and MF3 and MF5 composite images (MF35). When the forged image was post-altered with AVE3, DN0.9, UP1.1 and JPG70 after MF3, MF5 and MF35, the performance of the proposed scheme is lower than the MFR scheme. In particular, the feature vector in this paper has a superior classification ratio compared to AVE3. However, in the measured performances with unaltered, once-altered and post-altered images versus MF3, MF5 and MF35, the resultant AUC by 'sensitivity' (TP: true positive rate) and '1-specificity' (FN: false negative rate) is achieved closer to 1. Thus, it is confirmed that the grade evaluation of the proposed scheme can be rated as 'Excellent (A)'.

Dynamic Facial Expression of Fuzzy Modeling Using Probability of Emotion (감정확률을 이용한 동적 얼굴표정의 퍼지 모델링)

  • Kang, Hyo-Seok;Baek, Jae-Ho;Kim, Eun-Tai;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • This paper suggests to apply mirror-reflected method based 2D emotion recognition database to 3D application. Also, it makes facial expression of fuzzy modeling using probability of emotion. Suggested facial expression function applies fuzzy theory to 3 basic movement for facial expressions. This method applies 3D application to feature vector for emotion recognition from 2D application using mirror-reflected multi-image. Thus, we can have model based on fuzzy nonlinear facial expression of a 2D model for a real model. We use average values about probability of 6 basic expressions such as happy, sad, disgust, angry, surprise and fear. Furthermore, dynimic facial expressions are made via fuzzy modelling. This paper compares and analyzes feature vectors of real model with 3D human-like avatar.

3D Face Recognition using Local Depth Information

  • 이영학;심재창;이태홍
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.11
    • /
    • pp.818-825
    • /
    • 2002
  • Depth information is one of the most important factor for the recognition of a digital face image. Range images are very useful, when comparing one face with other faces, because of implicating depth information. As the processing for the whole fare produces a lot of calculations and data, face images ran be represented in terms of a vector of feature descriptors for a local area. In this paper, depth areas of a 3 dimensional(3D) face image were extracted by the contour line from some depth value. These were resampled and stored in consecutive location in feature vector using multiple feature method. A comparison between two faces was made based on their distance in the feature space, using Euclidian distance. This paper reduced the number of index data in the database and used fewer feature vectors than other methods. Proposed algorithm can be highly recognized for using local depth information and less feature vectors or the face.

Similarity Search in 3D Object using Minimum Bounding Cover (3D 오브젝트의 외피를 이용한 유사도 검색)

  • Kim, A-Mi;Song, Ju-Hwan;Gwun, Ou-Bong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.759-760
    • /
    • 2008
  • In this paper, We propose the feature-based 3D model Retrieval System. 3D models are represented as triangle meshes. A first simple feature vector can be calculated from hull. After looking for meshes intersected with the hull, we compute the curvature of meshes. These curvature are used as the model descriptor.

  • PDF

Feature Extraction Based on GRFs for Facial Expression Recognition

  • Yoon, Myoong-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.3
    • /
    • pp.23-31
    • /
    • 2002
  • In this paper we propose a new feature vector for recognition of the facial expression based on Gibbs distributions which are well suited for representing the spatial continuity. The extracted feature vectors are invariant under translation rotation, and scale of an facial expression imege. The Algorithm for recognition of a facial expression contains two parts: the extraction of feature vector and the recognition process. The extraction of feature vector are comprised of modified 2-D conditional moments based on estimated Gibbs distribution for an facial image. In the facial expression recognition phase, we use discrete left-right HMM which is widely used in pattern recognition. In order to evaluate the performance of the proposed scheme, experiments for recognition of four universal expression (anger, fear, happiness, surprise) was conducted with facial image sequences on Workstation. Experiment results reveal that the proposed scheme has high recognition rate over 95%.

  • PDF

Three-Dimensional Shape Recognition and Classification Using Local Features of Model Views and Sparse Representation of Shape Descriptors

  • Kanaan, Hussein;Behrad, Alireza
    • Journal of Information Processing Systems
    • /
    • v.16 no.2
    • /
    • pp.343-359
    • /
    • 2020
  • In this paper, a new algorithm is proposed for three-dimensional (3D) shape recognition using local features of model views and its sparse representation. The algorithm starts with the normalization of 3D models and the extraction of 2D views from uniformly distributed viewpoints. Consequently, the 2D views are stacked over each other to from view cubes. The algorithm employs the descriptors of 3D local features in the view cubes after applying Gabor filters in various directions as the initial features for 3D shape recognition. In the training stage, we store some 3D local features to build the prototype dictionary of local features. To extract an intermediate feature vector, we measure the similarity between the local descriptors of a shape model and the local features of the prototype dictionary. We represent the intermediate feature vectors of 3D models in the sparse domain to obtain the final descriptors of the models. Finally, support vector machine classifiers are used to recognize the 3D models. Experimental results using the Princeton Shape Benchmark database showed the average recognition rate of 89.7% using 20 views. We compared the proposed approach with state-of-the-art approaches and the results showed the effectiveness of the proposed algorithm.