• 제목/요약/키워드: 3D Face Recognition

검색결과 123건 처리시간 0.021초

Pose-normalized 3D Face Modeling for Face Recognition

  • Yu, Sun-Jin;Lee, Sang-Youn
    • 한국통신학회논문지
    • /
    • 제35권12C호
    • /
    • pp.984-994
    • /
    • 2010
  • Pose variation is a critical problem in face recognition. Three-dimensional(3D) face recognition techniques have been proposed, as 3D data contains depth information that may allow problems of pose variation to be handled more effectively than with 2D face recognition methods. This paper proposes a pose-normalized 3D face modeling method that translates and rotates any pose angle to a frontal pose using a plane fitting method by Singular Value Decomposition(SVD). First, we reconstruct 3D face data with stereo vision method. Second, nose peak point is estimated by depth information and then the angle of pose is estimated by a facial plane fitting algorithm using four facial features. Next, using the estimated pose angle, the 3D face is translated and rotated to a frontal pose. To demonstrate the effectiveness of the proposed method, we designed 2D and 3D face recognition experiments. The experimental results show that the performance of the normalized 3D face recognition method is superior to that of an un-normalized 3D face recognition method for overcoming the problems of pose variation.

Efficient 3D Model based Face Representation and Recognition Algorithmusing Pixel-to-Vertex Map (PVM)

  • Jeong, Kang-Hun;Moon, Hyeon-Joon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권1호
    • /
    • pp.228-246
    • /
    • 2011
  • A 3D model based approach for a face representation and recognition algorithm has been investigated as a robust solution for pose and illumination variation. Since a generative 3D face model consists of a large number of vertices, a 3D model based face recognition system is generally inefficient in computation time and complexity. In this paper, we propose a novel 3D face representation algorithm based on a pixel to vertex map (PVM) to optimize the number of vertices. We explore shape and texture coefficient vectors of the 3D model by fitting it to an input face using inverse compositional image alignment (ICIA) to evaluate face recognition performance. Experimental results show that the proposed face representation and recognition algorithm is efficient in computation time while maintaining reasonable accuracy.

3차원 얼굴인식 모델에 관한 연구: 모델 구조 비교연구 및 해석 (A Study On Three-dimensional Optimized Face Recognition Model : Comparative Studies and Analysis of Model Architectures)

  • 박찬준;오성권;김진율
    • 전기학회논문지
    • /
    • 제64권6호
    • /
    • pp.900-911
    • /
    • 2015
  • In this paper, 3D face recognition model is designed by using Polynomial based RBFNN(Radial Basis Function Neural Network) and PNN(Polynomial Neural Network). Also recognition rate is performed by this model. In existing 2D face recognition model, the degradation of recognition rate may occur in external environments such as face features using a brightness of the video. So 3D face recognition is performed by using 3D scanner for improving disadvantage of 2D face recognition. In the preprocessing part, obtained 3D face images for the variation of each pose are changed as front image by using pose compensation. The depth data of face image shape is extracted by using Multiple point signature. And whole area of face depth information is obtained by using the tip of a nose as a reference point. Parameter optimization is carried out with the aid of both ABC(Artificial Bee Colony) and PSO(Particle Swarm Optimization) for effective training and recognition. Experimental data for face recognition is built up by the face images of students and researchers in IC&CI Lab of Suwon University. By using the images of 3D face extracted in IC&CI Lab. the performance of 3D face recognition is evaluated and compared according to two types of models as well as point signature method based on two kinds of depth data information.

3차원 안면 자동 인식기(3D-FARA)의 안면 위치변화에 따른 정확도 검사 (Precision Test of 3D Face Automatic Recognition Apparatus(3D-FARA) by Rotation)

  • 석재화;조경래;조용범;유정희;곽창규;이수경;고병희;김종원;김규곤;이의주
    • 사상체질의학회지
    • /
    • 제18권3호
    • /
    • pp.57-63
    • /
    • 2006
  • 1. Objectives The Face is an important standard for the classification of Sasang Contitutions. Now We are developing 3D Face Automatic Recognition Apparatus to analyse the facial characteristics. This apparatus show us 3D image of man's face and measure facial figure. We should examine accuracy of position recognition in 3D Face Automatic Recognition Apparatus. 2. Methods We took a photograph of Face status with Land Mark 8 times using Face Automatic Recognition Apparatus. Each taking-photo, We span Face statusby 10 degree. At last time, We took a photograph of Face status's lateral face. And We analysed Error Averige of Distance between seven Land Marks. So We examined the accuracy of position recognition in 3D Face Automatic Recognition Apparatus at indirectly in degree changing of Face status. 3. Results and Conclusions According to degree change of Face status, Error Averige of Distance between Seven Land Marks is 0.1848mm. In conclusion, We assessed that accuracy of position recognition in 3D Face Automatic Recognition Apparatus is considerably good in spite of degree changing of Face status

  • PDF

3차원 얼굴 인식을 위한 PSO와 다중 포인트 특징 추출을 이용한 RBFNNs 패턴분류기 설계 (Design of RBFNNs Pattern Classifier Realized with the Aid of PSO and Multiple Point Signature for 3D Face Recognition)

  • 오성권;오승훈
    • 전기학회논문지
    • /
    • 제63권6호
    • /
    • pp.797-803
    • /
    • 2014
  • In this paper, 3D face recognition system is designed by using polynomial based on RBFNNs. In case of 2D face recognition, the recognition performance reduced by the external environmental factors such as illumination and facial pose. In order to compensate for these shortcomings of 2D face recognition, 3D face recognition. In the preprocessing part, according to the change of each position angle the obtained 3D face image shapes are changed into front image shapes through pose compensation. the depth data of face image shape by using Multiple Point Signature is extracted. Overall face depth information is obtained by using two or more reference points. The direct use of the extracted data an high-dimensional data leads to the deterioration of learning speed as well as recognition performance. We exploit principle component analysis(PCA) algorithm to conduct the dimension reduction of high-dimensional data. Parameter optimization is carried out with the aid of PSO for effective training and recognition. The proposed pattern classifier is experimented with and evaluated by using dataset obtained in IC & CI Lab.

3차원 안면자동인식기(3D-AFRA)의 Hardware 정밀도 검사 : 형상복원 오차분석 (An Hardware Error Analysis of 3D Automatic Face Recognition Apparatus(3D-AFRA) : Surface Reconstruction)

  • 석재화;송정훈;김현진;유정희;곽창규;이준희;고병희;김종원;이의주
    • 사상체질의학회지
    • /
    • 제19권2호
    • /
    • pp.30-39
    • /
    • 2007
  • 1. Objectives The Face is an important standard for the classification of Sasang Constitution. We are developing 3D Automatic Face Recognition Apparatus(3D-AFRA) to analyse the facial characteristics. This apparatus show us 3D image and data of man's face and measure facial figure data. So we should examine the figure restoration error of 3D Automatic Fare Recognition Apparatus(3D-AFRA) in hardware Error Analysis. 2. Methods We scanned Face status by using 3D Automatic Face Recognition Apparatus(3D-AFRA). And also we scanned Face status by using laser scanner(vivid 9i). We compared facial shape data be restored by 3D Automatic Face Recognition Apparatus(3D-AFRA) with facial shape data that be restorated by 3D laser scanner. And we analysed the average error and the maximum error of two data. 3. Results and Conclusions In frontal face, the average error was 0.48mm. and the maximum error was 4.60mm. In whole face, the average error of was 0.99mm. And the maximum error was 6.64mm. In conclusion, We assessed that accuracy of 3D Automatic Face Recognition Apparatus(3D-AFRA) is considerably good.

  • PDF

3차원 안면자동인식기(3D-AFRA)의 인식도 연구 (Accuracy of 3D Automatic Face Recognition Apparatus(3D-AFRA) Recognition)

  • 김윤희;양춘석;이준희;정용재;유정희;이승현;고병희;이의주
    • 사상체질의학회지
    • /
    • 제20권1호
    • /
    • pp.34-41
    • /
    • 2008
  • 1. Objectives We had been developing a 3D Automatic Face Recognition Apparatus (3D-AFRA) in order to evaluate the external appearances with more objectivity. This apparatus provides a 3D image and numerical data on facial configuration, and this study aims to evaluate the accuracy of 3D-AFRA recognition. 2. Methods Each scanned pictures were pointed with the 3D Automatic Face Recognition Apparatus(3D-AFRA). And the results were compared with data pointed pictures with manual. And we analysed the difference between Automatic and manual by paired -test. 3. Results and conclusions In frontal face, the P-value was more than 0.05. In conclusion, We assessed that accuracy of recognition of 3D Automatic Face Recognition Apparatus(3D-AFRA) is considerably good. But we should develop methods of measurement for lateral face and indistinct points of frontal face.

  • PDF

다면기법 SPFACS 영상객체를 이용한 AAM 알고리즘 적용 미소검출 설계 분석 (Using a Multi-Faced Technique SPFACS Video Object Design Analysis of The AAM Algorithm Applies Smile Detection)

  • 최병관
    • 디지털산업정보학회논문지
    • /
    • 제11권3호
    • /
    • pp.99-112
    • /
    • 2015
  • Digital imaging technology has advanced beyond the limits of the multimedia industry IT convergence, and to develop a complex industry, particularly in the field of object recognition, face smart-phones associated with various Application technology are being actively researched. Recently, face recognition technology is evolving into an intelligent object recognition through image recognition technology, detection technology, the detection object recognition through image recognition processing techniques applied technology is applied to the IP camera through the 3D image object recognition technology Face Recognition been actively studied. In this paper, we first look at the essential human factor, technical factors and trends about the technology of the human object recognition based SPFACS(Smile Progress Facial Action Coding System)study measures the smile detection technology recognizes multi-faceted object recognition. Study Method: 1)Human cognitive skills necessary to analyze the 3D object imaging system was designed. 2)3D object recognition, face detection parameter identification and optimal measurement method using the AAM algorithm inside the proposals and 3)Face recognition objects (Face recognition Technology) to apply the result to the recognition of the person's teeth area detecting expression recognition demonstrated by the effect of extracting the feature points.

Curvature and Histogram of oriented Gradients based 3D Face Recognition using Linear Discriminant Analysis

  • Lee, Yeunghak
    • Journal of Multimedia Information System
    • /
    • 제2권1호
    • /
    • pp.171-178
    • /
    • 2015
  • This article describes 3 dimensional (3D) face recognition system using histogram of oriented gradients (HOG) based on face curvature. The surface curvatures in the face contain the most important personal feature information. In this paper, 3D face images are recognized by the face components: cheek, eyes, mouth, and nose. For the proposed approach, the first step uses the face curvatures which present the facial features for 3D face images, after normalization using the singular value decomposition (SVD). Fisherface method is then applied to each component curvature face. The reason for adapting the Fisherface method maintains the surface attribute for the face curvature, even though it can generate reduced image dimension. And histogram of oriented gradients (HOG) descriptor is one of the state-of-art methods which have been shown to significantly outperform the existing feature set for several objects detection and recognition. In the last step, the linear discriminant analysis is explained for each component. The experimental results showed that the proposed approach leads to higher detection accuracy rate than other methods.

3차원 얼굴 인식을 위한 오류 보상 특이치 분해 기반 얼굴 포즈 추정 (Head Pose Estimation Using Error Compensated Singular Value Decomposition for 3D Face Recognition)

  • 송환종;양욱일;손광훈
    • 대한전자공학회논문지SP
    • /
    • 제40권6호
    • /
    • pp.31-40
    • /
    • 2003
  • 대부분의 얼굴인식 시스템은 현재 2차원 영상을 기반으로 많은 분야에 응용되고 있다. 그러나 2차원 얼굴인식 시스템은 심하게 변화된 얼굴 포즈에 강인한 얼굴인식이 매우 어렵다. 이에 얼굴 포즈 추정은 정면 영상이 아닐 경우 인식률 향상을 위한 필수적인 과정이라 할 수 있다. 그러므로, 본 논문은 3차원 얼굴인식을 위한 새로운 얼굴 포즈 추정 방식을 제안한다 먼저 3차원 거리(range) 영상이 입력될 때 얼굴 곡선에 기반한 자동 얼굴 특징점 추출 기법을 적용한다. 추출된 특징점을 바탕으로 오류 보상 특이치 분해를 적용 한 새로운 3차원 얼굴 포즈 추정 방식을 제안한다. 특이치 분해를 이용하여 초기 회전각을 획득한 후 존재하는 오류를 보다 세밀하게 보상한다. 제안 알고리즘은 정규화된 3차원 얼굴 공간에서 추출된 특징점의 기하학적 위치를 이용하여 수행된다. 또한 3차원 얼굴인식을 위하여 3차원 최근접 이웃 분류기를 이용한 데이터베이스내에서 후보 얼굴을 선택하는 방식을 제안한다. 실험 결과를 통해 다양한 얼굴 포즈에 대하여 제안 알고리즘의 효율성과 타당성을 검증하였다.