• Title/Summary/Keyword: 3D FEM simulation

Search Result 176, Processing Time 0.032 seconds

Prediction of Leachate Migration from Waste Disposal Site to Underground LPG Storage Facility and Review of Contamination Control Method by Numerical Simulations (수치모의를 통한 지하 LPG 저장시설에 인접한 폐기물매립지에서의 침출수이동 예측 및 제어공법 검토)

  • 한일영;서일원;오경택
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.3 no.2
    • /
    • pp.51-59
    • /
    • 1996
  • In case waste disposal site is to be constructed close to the underground facilities such as LPG storage cavern which is completely maintained by groundwater pressure, it is generally requested that the possibility on leachate contamination of cavern area be reviewed and the countermeasure, if it is estimated cavern area is severely affected by leachate, be taken into consideration. Prediction was performed and leachate control plan was made using by analytical and the numerical analysis on the leachate migration which is likely to happen at the area between the proposed waste disposal site and the underground LPG storage cavern located at the U petrochemical complex. Analytical solutions were obtained by the conservative mass advection-diffusion equation and the effect of advection and dispersion factor on the leachate migration was reviewed through peclet number calculation and the functional relationship between the factors and leachate transport velocity was established, which leads to enable us to predict the leachate transport velocity without difficulties when different parameters (factors) are used for analytical solution. Numerical solutions were obtained by FEM using AQUA2D which is for the simulation of groundwater flow and contaminant transport. 3-D discrete fracture models were simulated and fracture flow analysis was performed and feasibility study on the water-curtain system was conducted through the fracture connectivity analysis in rock mass. As results of those analyses, it was interpreted that the leachate would trespass on the LPG storage cavern area in 30 years from the proposed wate disposal site and the vertical water-curtain system was effective mathod for the prevention of leachate's migration further into the cavern area.

  • PDF

Prediction of Surface Crack Growth Considering the Wheel Load Increment Due to Rail Defect (레일손상에 의한 윤중증가를 고려한 표면균열 성장예측)

  • Jun, Hyun-Kyu;Choi, Jin-Yu;Na, Sung-Hoon;You, Won-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1078-1085
    • /
    • 2011
  • Prediction of a minimum crack size for growth, which is defined as a crack size that grows fast enough to keep ahead of its removal by contact wear and periodic grinding, is the most demanding work to prevent rail from fatigue failure and develop cost effective railway maintenance strategy In this study, we investigated the wheel load increment due to a rail defect during a train ran over it, and its effect on the minimum crack size for growth. For this purpose, we developed simulation software based on the Fletcher and Kapoor's "2.5D" model and measured wheel load increment during a train passed over a defect. A maximum contact pressure and contact patch size were calculated by 3D FEM and crack growth analyses were performed by varying two of dominant contact contributors; surface friction coefficient(0.1, 0.2, 0.3 and 0.4) and crack aspect ratio. The minimum crack sizes for growth were calculated from 0.29 to 1.44mm depending on the contact conditions. They were decreasing with increasing surface friction coefficient and decreasing with crack aspect ratio(a/b).

Wafer Level Packaging of RF-MEMS Devices with Vertical Feed-through (수직형 Feed-through 갖는 RF-MEMS 소자의 웨이퍼 레벨 패키징)

  • Park, Yun-Kwon;Lee, Duck-Jung;Park, Heung-Woo;kim, Hoon;Lee, Yun-Hi;Kim, Chul-Ju;Ju, Byeong-Kwon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.889-895
    • /
    • 2002
  • Wafer level packaging is gain mote momentum as a low cost, high performance solution for RF-MEMS devices. In this work, the flip-chip method was used for the wafer level packaging of RF-MEMS devices on the quartz substrate with low losses. For analyzing the EM (electromagnetic) characteristic of proposed packaging structure, we got the 3D structure simulation using FEM (finite element method). The electric field distribution of CPW and hole feed-through at 3 GHz were concentrated on the hole and the CPW. The reflection loss of the package was totally below 23 dB and the insertion loss that presents the signal transmission characteristic is above 0.06 dB. The 4-inch Pyrex glass was used as a package substrate and it was punched with air-blast with 250${\mu}{\textrm}{m}$ diameter holes. We made the vortical feed-throughs to reduce the electric path length and parasitic parameters. The vias were filled with plating gold. The package substrate was bonded with the silicon substrate with the B-stage epoxy. The loss of the overall package structure was tested with a network analyzer and was within 0.05 dB. This structure can be used for wafer level packaging of not only the RF-MEMS devices but also the MEMS devices.

Reduction Design of End Edge Effect in Stationary Discontinuous Armature PMLSM combined with Skewed Magnets and Stair Shape Auxiliary Teeth

  • Kim, Min-Seok;Kim, Yong-Jae
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.362-366
    • /
    • 2014
  • In recent years, a permanent magnet linear synchronous motor (PMLSM) has been used in various kinds of transportation applications for its relative high power density and efficiency. The general transportation system arranges the armature on the full length of transportation lines. However, when this method is applied to long distance transportation system, it causes increase of material cost and manufacturing time. Thus, in order to resolve this problem, we suggested stationary discontinuous armature PMLSM. However, the stationary discontinuous armature PMLSM contains the edges which always exist as a result of the discontinuous arrangement of the armature. These edges become a problem because the cogging force that they exert bad influences the controllability of the motor. Therefore, in this paper we proposed the combination of skewed magnets and stair shape auxiliary teeth to reduce the force by edge effect. Moreover, we analyzed the influence of the design factors by using a 3-D finite element method (FEM) simulation tool.

An Investigation of Tunnel Behaviour Using a Time-based 2-D Modelling Method (시간-파라미터 법에 의한 터널거동 특성 연구)

  • Shin, Jong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.17-28
    • /
    • 2002
  • Tunnel construction is a complex three dimensional operation. Since, however, it is neither possible nor useful to simulate all conditions and parameters in detail, a simplified two dimensional model is commonly employed in practice. The simulation of three dimensional conditions by a two dimensional model should use empirical parameters. The numerical predictions indicate that analysis results are highly dependent on the parameters. An improved modelling method based on time was adopted to account for three dimensional effect at the tunnel heading and time dependent nature, and used to perform an analysis of tunnelling in decomposed granite. The effects of weathering degree, tunnel shape and multi-drift excavation were investigated by using the method. It is identified that a structural benefit can be obtained by adopting a horse-shoe-shaped cross section with multi-drift excavation in mixed-force ground condition.

A High Performance Solenoid-Type MEMS Inductor

  • Seonho Seok;Chul Nam;Park, Wonseo;Kukjin Chun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.3
    • /
    • pp.182-188
    • /
    • 2001
  • A solenoid-type MEMS inductor with a quality factor over 10 at 2 GHz has been developed using an electroplating technique. The integrated spiral inductor has a low Q factor due to substrate loss and skin effects. It also occupies a large area compared to the solenoid-type inductor. The direction of flux of the solenoid-type inductor is parallel to the substrate, which can lower the substrate loss and other interference with integrated passive components. To estimate the characteristics of the proposed inductor over a high frequency range, the 3D FEM (Finite Element Method) simulation is used by using the HFSS at the Ansoft corporation. The electroplated solenoid-type inductor is fabricated on a glass substrate step by step by using photolithography and copper electroplating. The fabrication process to improve the quality factor of the inductor is also developed. The achieved inductance varies within a range from 0.5 nH to 2.8 nH, and the maximum Q factor is over 10.

  • PDF

Numerical Modeling of Seawater Intrusion in Coastal Aquifer (연안 대수층에서 해수침투 축성 해석)

  • 이연규;이희석
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.229-240
    • /
    • 2004
  • Coastal aquifers may serve as major sources fur freshwater. In many coastal aquifers, intrusion of seawater has become one of the major constraints imposed on groundwater utilization. The management of groundwater in coastal acquifers means making decision as to the pumping rate and the spatial distribution of wells. Several numerical techniques for flow and solute transport simulation can provide the means to achieve this goal. As a basic study to predict the intrusion of seawater in coastal phreatic aquifers, the coupled flow and solute transport analysis was conducted by use of the 3-D finite element code, SWICHA. In order to understand how the location and the shape of freshwater-seawater transition zone were affected by the boundary conditions and hydrogeologic variables, parametric study was carried out.

3D Electromagnetic Analysis of Magnetic Sensor for Improvement of Motor (모터의 성능향상을 위한 마그네틱 센서의 3차원 전자장 해석)

  • Shim, Sang-Oh;Kim, Ki-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2381-2387
    • /
    • 2013
  • This paper deals with an optimal angle error reduction method of magnetic hall sensor using hall effect elements with yoke. The magnetic position sensor is required to generate ideal sine and cosine waveforms from its hall effect elements according to rotation angle for precise angle information. However, the output signals are easy to include harmonics due to uneven magnetic field distribution from disturbance in the vicinity of hall effect elements. Thus, The paper studies a way which makes sine and cosine waveforms robust in disturbance and reduces harmonics by installing a yoke around Hall effect elements. The angle detection simulation for the magnetic hall sensor is performed by 3 dimensional finite element method and Taguchi method, one of the design of experiments. For the Taguchi method, three design parameters related to position of hall effect elements and shape of hall effect element yoke are selected.

A Study on the Extraction of Parasitic Capacitance for Multiple-level Interconnect Structures (다층배선 인터커넥트 구조의 기생 캐패시턴스 추출 연구)

  • 윤석인;원태영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.5
    • /
    • pp.44-53
    • /
    • 1999
  • This paper are reported a methodology and application for extracting parasitic capacitances in a multi-level interconnect semiconductor structure by a numerical technique. To calculate the parasitic capacitances between the interconnect lines, we employed finite element method (FEM) and calculated the distrubution of electric potential in the inter-metal layer dielecric(ILD) by solving the Laplace equation. The three-dimensional multi-level interconnect structure is generated directly from two-dimensional mask layout data by specifying process sequences and dimension. An exemplary structure comprising two metal lines with a dimension of 8.0$\times$8.0$\times$5.0$\mu\textrm{m}^3/TEX>, which is embedded in three dielectric layer, was simulated to extract the parasitic capacitances. In this calculation, 1960 nodes with 8892 tetrahedra were used in ULTRA SPARC 1 workstation. The total CPU time for the simulation was 28 seconds, while the memory size of 4.4MB was required.

  • PDF

The Study on Magnetic Characteristics of 2 Phase SRM with Self-Starting Capability (자기동이 가능한 2상 SRM의 자기적 특성에 관한 연구)

  • Oh, Seok-Gyu;Lee, Chee-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.9
    • /
    • pp.47-54
    • /
    • 2008
  • Cost reduction requires lowering number of power devices used in the converter driving SRM. This is quite feasible in SRM drive systems than in other drive systems. This paper deals with analysis and simulation of a novel two phase SRM. A novel two phase SRM has high performance, self-starling capability, high efficiency, and low manufacturing cost. Additionally, the stator back iron does not experience any flux reversal as the flux is in the same direction whether phase A or B is excited leading to a greater reduction in core losses. The magnetic analysis and design considerations of the novel two phase SRM have been obtained by the finite element analysis (FEM).