• 제목/요약/키워드: 3D FEM (Finite Element Method)

검색결과 412건 처리시간 0.022초

Finite Element Analysis and Dynamics Simulation of Mechanical Flux-Varying PM Machines with Auto-Rotary PMs

  • Huang, Chaozhi;Zhang, Zhixuan;Liu, Xiping;Xiao, Juanjuan;Xu, Hui
    • Journal of Power Electronics
    • /
    • 제19권3호
    • /
    • pp.744-750
    • /
    • 2019
  • A new type of auto-rotary PM mechanical flux-varying PM machine (ARPMMFVPMM) is proposed in this paper, which can overcome the problem where the air-gap magnetic field of a PM machine is difficult to freely adjust. The topology structures of the machine and the mechanical flux-adjusting device are given. In addition, the operation principle of flux-adjusting is analyzed in detail. Furthermore, the deformation of a spring with the speed variation is obtained by virtual prototype technology. Electromagnetic characteristics including the flux distribution, air gap flux density, flux linkage, electromagnetic-magnetic-force (EMF), and flux weakening ability are computed by 2D finite element method (FEM). Results show that the machine has some advantages such as the good field control ability.

포화를 고려한 디스트형 단상 SRM의 3차원 유한 요소해석 (3D finite element analysis of disk type single phase SRM considering the saturation)

  • 이종한;이은웅;이동주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 A
    • /
    • pp.325-327
    • /
    • 1998
  • Disk type single-phase switched reluctance motor which has an advantage of simple robust construction, simple control circuity, and low manufacturing cost has a specific property of axial flux machine and radial flux machine simultaneously. So, this DSPSRM has a complicated magnetic circuit and it is difficult to analyze characteristics of DSPSRM for design. In this paper, we used to analyze the effects of radial flux and axial flux simultaneously by 3D-finite element method. From the results of 3-D FEM, we obtained the approximated torque characteristics of DSPSRM. It's analysis results can be used in optimal design of DSPSRM considering the saturation.

  • PDF

An elasto-plastic damage constitutive model for jointed rock mass with an application

  • Wang, Hanpeng;Li, Yong;Li, Shucai;Zhang, Qingsong;Liu, Jian
    • Geomechanics and Engineering
    • /
    • 제11권1호
    • /
    • pp.77-94
    • /
    • 2016
  • A forked tunnel, as a special complicated underground structure, is composed of big-arch tunnel, multi-arch tunnel, neighborhood tunnels and separate tunnels according to the different distances between two separate tunnels. Due to the complicated process of design and construction, surrounding jointed rock mass stability of the big-arch tunnel which belongs to the forked tunnel during excavation is a hot issue that needs special attentions. In this paper, an elasto-plastic damage constitutive model for jointed rock mass is proposed based on the coupling method considering elasto-plastic and damage theories, and the irreversible thermodynamics theory. Based on this elasto-plastic damage constitutive model, a three dimensional elasto-plastic damage finite element code (D-FEM) is implemented using Visual Fortran language, which can numerically simulate the whole excavation process of underground project and perform the structural stability of the surrounding rock mass. Comparing with a popular commercial computer code, three dimensional fast Lagrangian analysis of continua (FLAC3D), this D-FEM has advantages in terms of rapid computing process, element grouping function and providing more material models. After that, FLAC3D and D-FEM are simultaneously used to perform the structural stability analysis of the surrounding rock mass in the forked tunnel considering three different computing schemes. The final numerical results behave almost consistent using both FLAC3D and D-FEM. But from the point of numerically obtained damage softening areas, the numerical results obtained by D-FEM more closely approach the practical behaviors of in-situ surrounding rock mass.

Analysis of Three-Dimensional Cracks in Inhomogeneous Materials Using Fuzzy Theory

  • Lee, Yang-Chang;Lee, Joon-Seong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권2호
    • /
    • pp.119-123
    • /
    • 2005
  • This paper describes a fuzzy-based system for analyzing the stress intensity factors (SIFs) of three-dimensional (3D) cracks. 3D finite element method(FEM) was used to obtain the SIF for subsurface cracks and surface cracks existing in inhomogeneous materials. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy theory. Nodes are generated by the bucketing method, and ten-noded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The singular elements such that the mid-point nodes near crack front are shifted at the quarter-points, and these are automatically placed along the 3D crack front. The complete FE model is generated, and a stress analysis is performed. The SIFs are calculated using the displacement extrapolation method. The results were compared with those surface cracks in homogeneous materials. Also, this system is applied to analyze cladding effect of surface cracks in inhomogeneous materials.

Investigation of fresh concrete behavior under vibration using mass-spring model

  • Aktas, Gultekin
    • Structural Engineering and Mechanics
    • /
    • 제57권3호
    • /
    • pp.425-439
    • /
    • 2016
  • This paper deals with the behavior of fresh concrete that is under vibration using mass-spring model (MSM). To this end, behaviors of two different full scale precast concrete molds were investigated experimentally and theoretically. Experiments were performed under vibration with the use of a computer-based data acquisition system. Transducers were used to measure time-dependent lateral displacements at some points on mold while mold is empty and full of fresh concrete. Analytical modeling of molds used in experiments were prepared by three dimensional finite element method (3D FEM) using software. Modeling of full mold, using MSM, was made to solve the problem of dynamic interaction between fresh concrete and mold. Numerical displacement histories obtained from time history analysis were compared with experimental results. The comparisons show that the measured and computed results are compatible.

자동차 조향장치 클램프 요크의 정밀냉간단조를 위한 유한요소해석 (Finite Element Analysis for Precision Cold Forging of Clamp Yoke in Automobile Steering System)

  • 송두호;박용복;임성주;김민응
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.220-223
    • /
    • 2001
  • Until now, the clamp yoke of automobile has been largely manufactured by hot forging or burring process. Through the study, the precision cold forging process for clamp yoke has been analysed by using rigid-plastic finite element analysis code, DEFORM-3D. It has shown various results of the FEM simulation. An engineer should select the proper process considering the amount of product.

  • PDF

연직파이프쿨링 공법에 의한 매스콘크리트 온도균열 제어에 관한 해석적 연구 (Analytical Study on Thermal Cracking Control of Mass Concrete by Vertical Pipe Cooling Method)

  • 서태석;조윤구;이근주;임창근
    • 콘크리트학회논문집
    • /
    • 제26권1호
    • /
    • pp.57-62
    • /
    • 2014
  • 이 연구에서는 수직으로 긴 매스 구조물에 적합한 파이프쿨링 공법을 제안하기 위하여 기존의 파이프쿨링 공법과는 달리 파이프를 수직으로 설치하는 연직파이프쿨링 공법을 개발하였다. 타당성을 검토하기 위하여 해석대상 부재의 형상($1{\times}3{\times}20m$, $4{\times}4{\times}4m$)을 대상으로 하여 FEM 해석을 수행하였으며, 온도 및 응력 변화와 온도균열 지수 등을 검토하였다. 그 결과, 매스콘크리트 구조물의 온도균열 제어에 효과가 있는 것을 확인할 수 있었다.

요추의 2차원 CT 영상을 이용한 3차원 형상모델링의 자동화 연구 (A Study on Automated 3-D Reconstruction Based on 2-D CT Image of Lumber Spine)

  • 김성민;김성재;서성영;탁계례
    • 대한의용생체공학회:의공학회지
    • /
    • 제20권5호
    • /
    • pp.581-586
    • /
    • 1999
  • 척추의 생체역학적 해석을 위한 유한요소기법을 이용한 컴퓨터 시뮬레이션은 척추의 손상에 대한 발생원인과 기전을 이해하고 치료의 효과를 예측하는 유용한 수단으로 기대되고 있다. 본 논문에서는 요추의 2차원 CT 영상을 이용하여 유한요소해석을 위한 척추의 3차원 모델링에 소비되는 많은 시간을 줄일 수 있도록 3차원 형상모델을 CT 형상 데이터와 형상변수를 이용, 각각 구현하는 과정을 자동화하여 이를 비교하였다.

  • PDF

유한요소법을 이용한 도파관 전자기 해석의 흡수경계조건 고찰 및 병렬화 (Absorbing Boundary Conditions and Parallelization for Waveguide Electromagnetic Analysis Using Finite Element Method)

  • 박우빈;김문성;이우찬
    • 인터넷정보학회논문지
    • /
    • 제23권3호
    • /
    • pp.67-76
    • /
    • 2022
  • 현대에는 전자기파를 이용한 전력 및 신호 전달이 필수적인데, 전자기파를 원하는 경로를 통해 효율적으로 전달하기 위해서는 도파 구조(guided structure)가 필요하다. 본 논문에서는 먼저 전파해석 기법인 유한요소법(FEM : Finite Element Method)을 적용하여 도파 구조 중 하나인 2-D/3-D 도파관(waveguide)에 대해 직접 in-house code를 작성하여 전자기 시뮬레이션하였다. 이후 in-house code의 해석 결과를 대표적인 전자파 상용 시뮬레이션 소프트웨어인 HFSS의 결과와 비교하여 해석의 정확성을 검증하였다. 아울러, 전자기 해석에 있어 무한대의 해석 영역을 잘라 해석하기 위해 필수적인 흡수경계조건(ABC : Absorbing Boundary Condition)의 성능을 분석한 후, 병렬화 기법의 적용에 따른 성능 향상을 제시하였다.