• 제목/요약/키워드: 3D FEA

검색결과 231건 처리시간 0.025초

전륜 서스펜션 성능향상을 위한 하이드로포밍 샤시 부품의 설계 최적화 (Design Optimization of Hydroforming Chassis Part for improving Front Suspension Performance)

  • 문만빈;김윤규;김효섭;진경수;김동학
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.187-190
    • /
    • 2009
  • Recently, automotive companies have invested in vehicle weight reduction and clean car development because of oil price rises and environmental problems. In particular, USA car makers have developed the vehicle spending 1 liter per 34km complying with PNGV(Partnership for a new generation of vehicle) and Europe car makers have developed the vehicle spending 3 liters per 100km. The USA government announced "The green car policy" in order to boost production of more fuel effective cars in 2009. According to the policy, it will be restricted to sell the car which spends more than 1 liter per 14.9km by 2020. To satisfy the current situations on automotive market, hydroforming technology has widely adapted vehicle structures such as engine cradle, chassis frame, A pillar, radiator support, etc. However, automotive companies have to consider formability and performance to improve and maximize the benefit from this technology in advance of detail design. The paper deals with one of the vehicle weight reduction methods using tube hydroforming technology and platform commonality in front suspension. FEA simulation is also introduced to evaluate hydro-formability and NVH performance at the beginning of design stage which is the best way to reduce the failure cost.

  • PDF

박판 점 곡직 시 변형 특성에 관한 연구 (Study on the Deformation Behavior by Spot Heating for thin plate)

  • 장경복;박중구;조시훈;장태원
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.285-287
    • /
    • 2005
  • During fabrication of deck house block in passenger ships, the problem of unexpected large deformation and distortion frequently occurs. In this case, line and spot heating method were widely used to correct the distortion of thin plate structure. Spot heating was especially used for the case under 5mm thickness. Few papers are available on the working conditions of spot heating method but only little information on deformation control. In this study, evaluation was carried out on the temperature distribution of spot heating methods using FEA and practical experiments for various heating time. IIn FEA, heat input model was established using Tsuji's double Gaussian heat input mode (Tsuji, I., 1988). This model was verified by comparing with experimental data. Also radial shrinkage and angular distortion due to spot heating were determined and compared with experimental results. Thermo elasto-plastic analysis was performed using commercial FE code, MSC/MARC. Radial shrinkage and angular distortion were measured using 3D measuring apparatus. Based on these results, simplified analysis model for deformation by spot heating was established.

  • PDF

Numerical Simulation of Welding Residual Stress Distribution on T-joint Fillet Structure

  • Hwang, Se-Yun;Lee, Jang-Hyun;Kim, Sung-Chan;Viswanathan, Kodakkal Kannan
    • International Journal of Ocean System Engineering
    • /
    • 제2권2호
    • /
    • pp.82-91
    • /
    • 2012
  • Fillet welding is widely used in the assembly of ships and offshore structures. The T-joint configuration is frequently reported to experience fatigue damage when a marine structure meets extreme loads such as storm loads. Fatigue damage is affected by the magnitude of residual stresses on the weld. Recently, many shipping registers and design guides have required that the fatigue strength assessment procedure of seagoing structures under wave-induced random loading and storm loading be compensated based on the effect of residual stresses. We propose a computational procedure to analyze the residual stresses in a T-joint. Residual stresses are measured by the X-ray diffraction (XRD) method, and a 3-D finite element analysis (FEA) is performed to obtain the residual stress profile in the T-joint. The proposed finite element model is validated by comparing experiments with computational results, and the characteristics of the residual stresses in the T-joint are discussed.

Back EMF Design of an AFPM Motor using PCB Winding by Quasi 3D Space Harmonic Analysis Method

  • Jang, Dae-Kyu;Chang, Jung-Hwan;Jang, Gun-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권5호
    • /
    • pp.730-735
    • /
    • 2012
  • This paper presents a method to design the waveform of a back electromotive force (back EMF) of an axial flux permanent magnet (AFPM) motor using printed circuit board (PCB) windings. When the magnetization distribution of permanent magnet (PM) is given, the magnetic field in the air gap region is calculated by the quasi three dimensional (3D) space harmonic analysis (SHA) method. Once the flux density distribution in the winding region is determined, the required shape of the back EMF can be obtained by adjusting the winding distribution. This can be done by modifying the distance between patterns of PCB to control the harmonics in the winding distribution. The proposed method is verified by finite element analysis (FEA) results and it shows the usefulness of the method in eliminating a specific harmonic component in the back EMF waveform of a motor.

유한요소해석에 기반한 콘크리트 균열 조건에 따른 수분흡수 현상 분석 (FEA Simulations on Water Absorption in Various Pre-Cracked Concretes)

  • 김건수;박기태;김재환
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권5호
    • /
    • pp.68-75
    • /
    • 2021
  • 본 연구에서는 콘크리트의 균열조건에 따른 수분 흡수 현상을 해석적으로 분석하였다. 흡수 시간의 증가에 따라 콘크리트 표면을 통해 흡수되는 수분의 양을 실험적으로 분석한 기존 연구 결과들을 바탕으로 2차원 유한요소해석 모델을 개발하였다. 고려된 균열조건은 균열 폭(0.1 mm, 0.3 mm), 균열 깊이(0 ~ 250 mm), 균열 간격(0 ~ 200 mm)이며 총 30개 모델에 대한 유한요소해석을 수행하였다. 유한요소해석을 수행한 결과, 콘크리트 균열부의 수분 흡수량 증가에 중요한 영향을 미치는 조건은 균열 폭 및 균열 깊이의 변화로 확인되었다. 또한 비균열 조건의 콘크리트에 비해 균열부에서 추가로 흡수되는 물의 양을 정량적으로 분석하기 위하여, 균열부 수분 흡수계수(Scrack) 개념을 도입하고 이를 추정하기 위한 예측 식을 제안하였다. 균열 깊이에 대한 분석 결과, 콘크리트 균열 폭과 관계없이 균열 깊이 150 mm 이하에서는 균열로 인한 수분 흡수가 활발하게 발생할 수 있음을 확인하였다. 따라서 외부에 노출된 철근콘크리트 구조물은 제설제와 같은 수용액 등의 흡수로 인하여 철근 부식이 발생할 수 있음을 고려하면, 실제 시설물의 균열 조건을 파악하기 위해서는 시설물의 점검 및 진단 시에 기존 균열 폭에 대한 조사뿐만 아니라 균열 깊이에 대한 조사도 함께 수행되어야 할 것으로 판단된다.

다중충돌 피닝잔류응력 평가를 위한 소성숏이 포함된 3차원 유한요소해석 모델 (A 3D FEA Model with Plastic Shots for Evaluation of Peening Residual Stress due to Multi-Impacts)

  • 김태형;이형일
    • 대한기계학회논문집A
    • /
    • 제32권8호
    • /
    • pp.642-653
    • /
    • 2008
  • In this paper, we propose a 3-D finite element (FE) analysis model with combined physical behavior and kinematical impact factors for evaluation of residual stress in multi-impact shot peening. The FE model considers both physical behavior of material and characteristics of kinematical impact. The physical parameters include elastic-plastic FE modeling of shot ball, material damping coefficient, dynamic friction coefficient. The kinematical parameters include impact velocity and diameter of shot ball. Multi-impact FE model consists of 3-D symmetry-cell. We can describe a certain repeated area of peened specimen under equibiaxial residual stress by the cell. With the cell model, we investigate the FE peening coverage, dependency on the impact sequence, effect of repeated cycle. The proposed FE model provides converged and unique solution of surface stress, maximum compressive residual stress and deformation depth at four impact positions. Further, in contrast to the rigid and elastic shots, plastically deformable shot produces residual stresses closer to experimental solutions by X-ray diffraction. Consequently, it is confirmed that the FE model with peening factors and plastic shot is valid for multi-shot peening analyses.

위상최적화 기법을 이용한 사출 금형 최적 설계 (A Study on Injection Mold Design Using Topology Optimization)

  • 김미진;최재혁;백경윤
    • 한국기계가공학회지
    • /
    • 제21권4호
    • /
    • pp.100-106
    • /
    • 2022
  • Topology optimization is applied for the optimal design of various products to ensure weight reduction and productivity improvement. Reducing the weight of the mold while maintaining its rigidity can ensure shortening of the production cycle, stabilization of the mold temperature, and reduction of mold material costs. In this study, a topology optimization technique was applied to the optimal design of the injection mold, and a topology-optimized model of the mold was obtained. First, the injection mold for the square specimens was modeled. Subsequently, a structural analysis was performed by implementing a load condition generated during the injection molding process. Topology optimization was performed based on the structural analysis results, and the models of the initial and topology-optimized designs were manufactured at 1/4 magnification using a 3D printer. Consequently, compared with the existing model, the weight of the topology-optimized model decreased by 9.8%, and the manufacturing time decreased by 7.61%.

상이한 골질과 제원에 따른 짧은 임프란트의 응력 분포: 3차원 유한 요소 분석 (STRESS DISTRIBUTION PATTERN OF THE DIFFERENT DIAMETER AND LENGTH OF SHORT IMPLANTS ACCORDING TO THE BONE QUALITY : 3-D FINITE ELEMENTS ANALYSIS)

  • 김한구;김창현;표성운
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제31권2호
    • /
    • pp.116-126
    • /
    • 2009
  • The use of short implants has been accepted risky from biomechanical point of view. However, short implants appear to be a long term viable solution according to recent clinical reports. The purpose of this study was to investigate the effect of different diameter and length of implant size to the different type of bone on the load distribution pattern. Stress analysis was performed using 3-dimensional finite element analysis(3D-FEA). A three-dimensional linear elastic model was generated. All implants modeled were of the various diameter(${\phi}4.0$, 4.5, 5.0 and 6.0 mm) and varied in length, at 7.0, 8.5 and 10.0 mm. Each implant was modeled with a titanium abutment screw and abutment. The implants were seated in a supporting D2 and D4 bone structure consisting of cortical and cancellous bone. An amount of 100 N occlusal load of vertical and $30^{\circ}$ angle to axis of implant and to buccolingual plane were applied. As a result, the maximum equivalent stress of D2 and D4 bones has been concentrated upper region of cortical bone. As the width of implant is increased, the equivalent stress is decreased in cancellous bone and stress was more homogeneously distributed along the implants in all types of bone. The short implant of diameter 5.0mm, 6.0mm showed effective stress distribution in D2 and D4 bone. The oblique force of 100N generated more concentrated stress on the D2 cortical bone. Within the limitations of this study, the use of short implant may offer a predictable treatment method in the vertically restricted sites.

간이화된 격자 구조 모델을 사용한 선박의 도킹 해석에 대하여 (On the Docking Analysis of Global Ship Structure Using Simplified Grillage Model)

  • 김성찬;유철호;이장현;이경석;백기대;손상용;최중효
    • 대한조선학회논문집
    • /
    • 제45권6호
    • /
    • pp.710-718
    • /
    • 2008
  • This paper presents a simple and fast approach to plan the arrangement of supports and to do a ship docking analysis. The unpredicted structural damages often happen from a docking works as the size of ships are getting larger and larger. In docking a ship, excessive reaction forces from supports are primary causes of the structural damage. The grillage analysis method is employed to simply calculate only the reaction forces at supports. The grillage modeling strategies are proposed to improve the accuracy. In this paper, the results obtained by the proposed approach are compared with those of the current whole-ship FEA for typical types of ships. Comparison shows that the results from the present grillage approaches are reasonably in a good agreement with the 3-D full F.E one. Finally, an integrated program developed for the ship docking analysis is described.

냉연 초고강도강 적용 차량용 리어 크로스 멤버 형상 설계 변수 최적화 (Design Optimization of Automotive Rear Cross Member with Cold-rolled Ultra High Strength Steel)

  • 김준영;김상훈;최돈현;홍석무
    • 소성∙가공
    • /
    • 제33권2호
    • /
    • pp.103-111
    • /
    • 2024
  • With the increasing global interest in carbon neutrality, the automotive industry is also transitioning to the production of eco-friendly cars, specifically electric vehicles. In order to achieve comparable driving distances to internal combustion engine vehicles, the application of high-capacity battery packs has led to an increase in vehicle weight. To achieve light-weighting and durability requirements of automotive components simultaneously, there is a demand for research on the application of Ultra-High Strength Steel (UHSS). However, when manufacturing chassis components using UHSS, there are challenges related to fracture defects due to lower elongation compared to regular steel sheets, as well as spring-back issues caused by high tensile strength. In this study, a simulated specimen that is not affected by the property changes of four materials was designed to improve formability of the rear cross member, which is the most challenging automotive chassis component. The influence and correlation of material-specific variables were analyzed through finite element analysis (FEA) for each material with tensile strength of 440, 590, 780, and 980 MPa grades, resulting in the development of a predictive equation. To validate the equation, the simulated specimens of 980 MPa grade were produced from the test molds. Then the reliability of the FEA and predictive equation was verified with measured specimen data using a 3D scanner. The results of this study can be proposed to improve the formability of UHSS chassis components in future researches.