• Title/Summary/Keyword: 3D Deformation

Search Result 1,187, Processing Time 0.027 seconds

A Methodology for 3-D Optimally-Interpolated Satellite Sea Surface Temperature Field and Limitation (인공위성 해수면온도 3-D 최적 내삽 합성장 생산 방법과 한계점)

  • Park, Kyung-Ae;Kim, Young-Ho
    • Journal of the Korean earth science society
    • /
    • v.30 no.2
    • /
    • pp.223-233
    • /
    • 2009
  • Three-dimensional (3-D) optimally-interpolated sea surface temperature (SST) field was produced by using AQUA/AMSR-E satellite data, and its limitations were described by comparing the temporal average of sea surface temperatures. The 3-D OI (Optimum Interpolation) SST showed a small error of less than $0.05^{\circ}C$ in the central North Pacific, but yielded large errors of greater than $0.4^{\circ}C$ at the coastal area where the satellite microwave data were not available. OI SST composite around pixels with no observation due to heavy rainfall or cloudy pixels had estimation errors of $0.1-0.15^{\circ}C$. Comparison with temporal means showed a tendency that overall OI SSTs were underestimated around heavy cloudy pixels and smoothed out by reducing the magnitude of SST fronts. In the low-latitude areas near the equator, OI SST field produced discontinuity, originated from the window size for the OI procedure. This was mainly caused by differences in the spatial scale of oceanic features. Infernal Rossby deformation radius, as a measure of spatial stale, showed dominant latitudinal variations with O(1) difference in the North Pacific. This study suggests that OI SST methodology should consider latitudinally-varying size of window and the characteristics of spatial scales of oceanic phenomena with substantial dependency on latitude and vertical structure of density.

Vision-based dense displacement and strain estimation of miter gates with the performance evaluation using physics-based graphics models

  • Narazaki, Yasutaka;Hoskere, Vedhus;Eick, Brian A.;Smith, Matthew D.;Spencer, Billie F.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.709-721
    • /
    • 2019
  • This paper investigates the framework of vision-based dense displacement and strain measurement of miter gates with the approach for the quantitative evaluation of the expected performance. The proposed framework consists of the following steps: (i) Estimation of 3D displacement and strain from images before and after deformation (water-fill event), (ii) evaluation of the expected performance of the measurement, and (iii) selection of measurement setting with the highest expected accuracy. The framework first estimates the full-field optical flow between the images before and after water-fill event, and project the flow to the finite element (FE) model to estimate the 3D displacement and strain. Then, the expected displacement/strain estimation accuracy is evaluated at each node/element of the FE model. Finally, methods and measurement settings with the highest expected accuracy are selected to achieve the best results from the field measurement. A physics-based graphics model (PBGM) of miter gates of the Greenup Lock and Dam with the updated texturing step is used to simulate the vision-based measurements in a photo-realistic environment and evaluate the expected performance of different measurement plans (camera properties, camera placement, post-processing algorithms). The framework investigated in this paper can be used to analyze and optimize the performance of the measurement with different camera placement and post-processing steps prior to the field test.

Analysis of the Extension and Contraction of Warp-knitted Fabrics Based on Experimental Conditions (실험 조건에 따른 경편성물의 신장률과 축소율 분석)

  • Lee, OkKyung;Hong, Kyunghi;Lee, Gyeongmi;Lee, Yejin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.3
    • /
    • pp.453-463
    • /
    • 2021
  • The lengthwise and widthwise deformation of warp-knitted fabrics with different sizes and loading modes were evaluated. Moreover, five tricot samples cut in three directions were compared under four test conditions (A-D). In tests A and B, 500 and 250 g loads were applied on a layer of 20 × 20 and 5 × 10 cm2 samples, respectively. In test C, a 20 × 20 cm2 sample was folded in half over a rod, and 500 g load was applied to each half. In test D, a 20 × 20 cm2 sample was sewn in a loop and subjected to a 500 g load. The lengthwise extension and widthwise contraction analysis results indicate that test B affords the largest values. However, analysis results of the warp-knitted fabric normalized through conversion to a 1 g load and 1 cm sample width indicate that the largest values are afforded for test D. Therefore, pattern reduction may vary depending on the measurement method and properties of the knitted fabric used for the compression wear production, causing variations in the finished product. Thus, an appropriate measurement method must be adopted based on the compression wear design and knitted fabric to be used.

Responses of high-rise building resting on piled raft to adjacent tunnel at different depths relative to piles

  • Soomro, Mukhtiar Ali;Mangi, Naeem;Memon, Aftab Hameed;Mangnejo, Dildar Ali
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.25-40
    • /
    • 2022
  • In this study, 3D coupled-consolidation numerical parametric study was conducted to predict the deformation mechanism of a 20 storey building sitting on (4×4) piled raft (with length of piles, Lp=30 m) to adjacent 6 m diameter (D) tunnelling in stiff clay. The influences of different tunnel locations relative to piles (i.e., zt/Lp) were investigated in this parametric study. In first case, the tunnel was excavated near the pile shafts with depth of tunnel axis (zt) of 9 m (i.e., zt/Lp). In second and third cases, tunnels were driven at zt of 30 m and 42 m (i.e., zt/Lp = 1.0 and 1.4), respectively. An advanced hypoplastic clay model (which is capable of taking small-strain stiffness in account) was adopted to capture soil behaviour. The computed results revealed that tunnelling activity adjacent to a building resting on piled raft caused significant settlement, differential settlement, lateral deflection, angular distortion in the building. In addition, substantial bending moment, shear forces and changes in axial load distribution along pile length were induced. The findings from the parametric study revealed that the building and pile responses significantly influenced by tunnel location relative to pile.

A Simplified Method for Determining Modal Strain Energy Release Rate of Free-Edge Delaminations in Laminated Composite (적층복합재의 자유단 박리에 대한 모드별 스트레인 에너지해방률의 간이계산법)

  • Kim, Taek-Hyun;Oh, Taek-Yul;Kim, In-Kweon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.423-429
    • /
    • 1997
  • A simplified method for determining the mode components of the strain energy release rate of free-edge delaminations in laminated composite is proposed. The interlaminar stresses are evaluated as an interface moment and interface shear forces that are obtained from the equilibrium equations at the interface between the adjacent layers. Deformation of an edge-delaminated laminate is calculated by using a generalized quasi-three dimensional classical laminated plate theory developed by the authors. The analysis provides closed-form expression for the three components of the strain energy release rate. Comparison of results with a finite element solution using the virtual crack closure technique shows good agreement. In the present study, laminated composite with stacking sequences of [30/-30/90]$_{s}$ were examined. The simple nature of the method makes it suitable for primary design analysis for the delaminations of laminated composite.e.

Sensitivity Analysis of Numerical Variables Affecting the Electromagnetic Forming Simulation of a High Strength Steel Sheet Using a Driver Sheet (수치적 변수들이 배면판을 이용한 고강도 강판의 전자기 성형 해석에 미치는 영향도 분석)

  • Park, H.;Lee, J.;Lee, Y.;Kim, J.H.;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.28 no.3
    • /
    • pp.159-166
    • /
    • 2019
  • Electromagnetic forming (EMF) simulations consider 3-dimensionally coupled electromagnetic-mechanical phenomenon using LS-DYNA, therefore the calculation cost is normally expensive. In this study, a sensitivity analysis in regard to the simulation variables affecting the calculation time was carried out. The EMF experiments were conducted to form an elliptically protruding shape on a high-strength steel sheet, and it was predicted using LS-DYNA simulation. In this particular EMF simulation case, the effect of several simulation variables, viz., element size, contact condition, EM-time step interval, and re-calculation number of the EM matrices, on the shape of elliptical protrusion and the total calculation time was analyzed. As a result, reasonable values of the simulation variables between the simulation precision and calculation time were proposed, and the EMF experiments with respect to the charging voltages were successfully predicted.

Numerical Simulation of High-Velocity Oblique Impact of Mild Steel Spheres Against Mild Steel Plates (연강 판재에 대한 연강 구의 고속경사충돌 수치해석)

  • Yu, Yo-Han;Jang, Sun-Nam;Jeong, Dong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.576-585
    • /
    • 2002
  • A three-dimensional Lagrangian explicit time-integration finite element code for analyzing the dynamic impact phenomena was developed. It uses four node tetrahedral elements. In order to consider the effects of strain rate hardening, strain hardening and thermal softening, which are frequently observed in high-velocity deformation phenomena, Johnson-Cook model is used as constitutive model. For more accurate and robust contact force computation, the defense node contact algorithm was adopted and implemented. In order to evaluate the performance of the newly developed three-dimensional hydrocode NET3D, numerical simulations of the oblique impact of mild steel plate by mild steel sphere were carried out. Ballistic limit about various oblique angle between 0 degree and 80 degree was estimated through a series of simulations with different initial velocities of sphere. Element eroding by equivalent plastic strain was applied to mild steel spheres and targets. Ballistic limits and fracture characteristics obtained from simulation were compared with experimental results conducted by Finnegan et al. From numerical studies, the following conclusions were reached. (1) Simulations could successfully reproduce the key features observed in experiment such as tensile failure termed "disking"at normal impacts and outwards bending of partially formed plus segments termed "hinge-mode"at oblique impacts. (2) Simulation results fur 60 degrees oblique impact at 0.70 km/s and 0.91 km/s were compared with experimental results and Eulerian hydrocode CTH simulation results. The Lagrangian code NET3D is superior to Eulerian code CTH in the computational accuracy. Agreement with the experimentally obtained final deformed cross-sections of the projectile is excellent. (3) Agreement with the experimental ballistic limit data, particularly at the high-obliquity impacts, is reasonably good. (4) The simulation result is not very sensitive to eroding condition but slightly influenced by friction coefficient.

Stability Analysis of the Excavation Slope on Soft Ground using Sheet Pile (널말뚝을 이용한 연약지반 굴착사면의 안정해석)

  • Kang, Yea Mook;Cho, Seong Seop;Lee, Dal Won
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.13-24
    • /
    • 1996
  • The following results were obtained by analyzing the displacement, strain and stability of ground at the soft ground excavation using sheet pile. 1. Before setting the strut, the horizontal displacement was large on the upper part of excavated side, but after setting the strut, it showed concentrated phenomenon while being moved to go down to the excavated side. 2. After setting the strut, the displacement of sheet pile was rapidly decreased about a half compared with before setting the strut. The limitation of excavation depth was shown approximately GL-8m after setting double stair strut. 3. Maximum shear strain was gradually increased with depth of excavation, and local failure possibility due to shear deformation at the bottom of excavation was decreased by reinforcement of strut. 4. Maximum horizontal displacement of sheet pile at GL-7.5m was shown 0.2% of excavation depth in elasto-plastic method, and 0.6% in finite-element methods, and the maximum displacement was occurred around the bottom of excavation. 5. To secure the safety factor about penetration depth in the ground of modeling, D/H should be more than 0.89 in the case of one stair strut, and more than 0.77 in the case of double stair strut. 6. The relation of safety factor and D/H about the penetration depth was appeared, Fs=0.736(D/H) + 0.54 in the case of one stair strut, and Fs=0.750(D/H) + 0.62 in the case of double stair strut.

  • PDF

Geological Structures and Geochemical Uranium Anormal Zone Around the Shinbo Mine, Korea (신보광산 주변지역의 지질구조와 우라늄 지화학 이상대)

  • Kang, Ji-Hoon;Lee, Deok-Seon
    • Economic and Environmental Geology
    • /
    • v.45 no.1
    • /
    • pp.31-40
    • /
    • 2012
  • This paper examined the characteristics of ductile and brittle structural elements with detailed mapping by lithofacies classification to clarify the relationship between the geological structure and the geochemical high-grade uranium anormal zone and to provide the basic information on the flow of groundwater in the eastern area of Shinbo mine, Jinan-gun, Jeollabuk-do, Korea. It indicates that this area is mainly composed of Precambrian quartzite, metapelite, metapsammite, which show a zonal distribution of mainly ENE-WSW trend, and age unknown pegmatite and Cretaceous porphyry which intrude them. But the Cretaceous Jinan Group which unconformably covers them, contrary to assumption, could not be observed. The main ductile deformation structures of Precambrian metasedimentary rocks were formed at least through three phases of deformation [ENE striking regional foliation (D1) -> ENE or EW striking crenulation foliation (D2) -> WNW or EW trending open, tight, kink folds (D3)]. The predominant orientation of S1 regional foliation strikes ENE and dips south, being similar to the zonal distribution of Precambrian metasedimentary rocks. Most predominant orientation of high-angled brittle fracture (dip angle ${\geq}45^{\circ}$) [ENE (frequency: 24.3%) > NS (23.9%) > (N)NW (18.8%) > WNW (16.9%) > NE (16.1%) fracture sets in descending frequency order], which is closely related to the flow of groundwater, strikes ENE and dips south. It also agrees with the zonal distribution of metasedimentary rocks and the predominant orientation of S1 regional foliation. The next one strikes NS and dips east or west. Considering the controlling factor of the geochemical uranium anormal zone in the Shinbo mine and its eastern areas from the above structural data. the uranium source rock in these areas might be pegmatite and the geochemical uranium anormal zone in the Sinbo mine area could be formed by an secondary enrichment through the flow of pegmatite aquifer's groundwater into the Sinbo mine area like the previous research's result.

Surface Flattening criterion of Female's Upper Front Shell Using Grid Method (Grid method에 의한 성인 여성 3차원 형상의 상반신 앞판에 대한 평면전개 기준 연구)

  • Choi, Young-Lim;Nam, Yun-Ja;Choi, Kueng-Mi;Cui, Ming-Hai;Han, Sul-Ah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.12
    • /
    • pp.1825-1836
    • /
    • 2008
  • Many applications in computer graphics require complex and highly detailed models. However it is often desirable to use approximations in place of excessively detailed models in order to control the processing time. Thus, we aim to develop a notion of optimal matrix to simplify surface which can rapidly obtain the high quality 2D patterns flattening 3D surface as follows. Firstly, two 3D bodies are modeled based on existing Size Korea data. Secondly, each model is divided by shell and block for its pattern draft. Thirdly, each block is flattened by grid and bridge method. Finally, we selected the optimal matrix and demonstrated the efficiency and quality of the proposed method. This proposed approach accommodates surfaces with darts, which are commonly used in the clothing industry to reduce the deformation of surface forming and flattening. The resulting optimal matrix could be an initiation of standardization for pattern flattening. It is expected that this method could facilitate much better approximation in both efficiency and precision.