• Title/Summary/Keyword: 3D Deformation

Search Result 1,187, Processing Time 0.028 seconds

Effects of Excavation Methods on Tunnel Deformation Behavior - A Numerical Investigation (굴착공법이 터널변위 거동에 미치는 영향 - 수치해석 연구)

  • Yoo, Chung-Sik;Kim, Joo-Mi;Kim, Sun-Bin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.4
    • /
    • pp.289-305
    • /
    • 2006
  • This paper presents the effect of excavating methods on tunnel behavior. As part of this study, it is preliminarily focused on the comparison of two different excavation methods, center diaphram (CD) method and ringcut (RC) method. Especially, the purpose of this research is to study the behavioral mechanism of two tunnels which share the same construction environment but different excavating method. Two numerical analysis models with the same tunnel section and material properties are compared in this study, and they are analyzed by 3D finite element analysis. In each model, face stability, crown displacement, ground settlement, and shotcrete-lining stress are computed, then the general behavior of CD method and RC method is studied. The results indicate that the CD method tends to be effective in controlling tunnel displacement while the RC method is more effective in controlling ground settlement. Design implications of the findings from this study are discussed.

An Experiment on Flow Simulation Depending on Opening Configuration of Weir Using a Numerical Model (수치모형을 이용한 보의 개방구성에 따른 흐름모의 실험)

  • Kang, Tae Un;Jang, Chang-Lae
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.3
    • /
    • pp.218-226
    • /
    • 2020
  • This study investigated that the numerical experiment for analysis on free overtopping flow by a weir of levee type, as the first stage of the development of a numerical technique for prediction methodology based on a numerical model. Using 2-dimensional flow models, Nays2DH, we conducted numerical simulations based on existing experimental data to compare and verify the models. We firstly discussed the numerical reproducibility for the discontinued flow by weir shape, and calibrated the computational flow through preprocessing of channel bed. Further, we carried out and compared the simulations for prediction on the overtopping flow by the number of weir gates. As a result of simulations, we found that the maximum flow velocity of downstream of weir increases when the number of weir gates increases under the same cross sectional area of flow. Through such results, this study could present basic data for hydraulic research to consider the water flow and sediment transport depending on weir operation in the future work.

Particle Behavior and Deformation During Compaction of Al Powder Using MPFEM (다입자유한요소법을 이용한 Al분말 압축공정에서 입자의 거동과 변형에 관한 연구)

  • Lee, Kyung-Hun;Lee, Jung-Min;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.383-390
    • /
    • 2010
  • This paper describes multiparticle finite element model (MPFEM)-based powder compaction simulations performed to demonstrate the densification of compacted aluminum powders. A 2D MPFEM was used to explore the densification of a collection of aluminum particles with different average particle sizes under various ram speeds. Individual particles are discretized using a finite element mesh for a detailed description of contact mechanics. Porous aluminum powders with average particle sizes of $20\;{\mu}m$ and $3\;{\mu}m$ were compressed uniaxially at ram speeds of 5, 15, 30, and 60 mm/min by using an MTS servo-hydraulic tester. The slow ram speed was of great advantage to powder densification in low compaction force due to sufficient particle rearrangement. Owing to a decrease in the average particle size of aluminum, the compaction force increased.

Influence of Load on Welding Stress Distribution of Structural Steel (구조용 강재의 용접응력 분포에 미치는 작용력의 영향)

  • Lee, Sang Hyong;Chang, Kyong Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.555-564
    • /
    • 2004
  • Steel materials, which are normally used in bridge structures, are prone to corrosion and have thin plate structures. Steel bridges that have been damaged through increased vehicle load and corrosion are frequently expected to be strengthened. Repair or strengthening methods generally include cutting, bolting, and welding. The basic characteristics of stress and deformation behavior generated by cutting and welding in the course of the repair work, however, are not yet understood. It is difficult to say whether the safety of the structure after welding conforms with existing safety evaluation methods.Therefore, to gain confidence in the material and to guarantee the safety of the structure after welding, the stress generated by heat, through welding and cutting, was generalized. The effect of additional loads with respect to stress generated by heat was also investigated.

Evaluation of Fatigue Life and Structural Analysis for Dish-Type and Spoke-Type Automobile Wheels (승용차용 디쉬 타입과 스포크 타입 휠에 대한 구조 해석과 피로 수명 예측)

  • Kang, Sung-Soo;Lee, Jong-Hwa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1315-1321
    • /
    • 2011
  • Prior to the experimental and production stages of goods, the strengths should be evaluated in the design stage. The introduction of commercial codes at the design stage gives benefits such as cost and time economies in the production and strength evaluation. In this study, structural analysis and fatigue analysis are carried out using ANSYS modeling of the 3D geometry of the wheel. In a comparison of dish-type and spoke-type wheels, it is shown that the deformation and maximum equivalent stress for the dish-type wheels are lower than those for spoke-type wheels. Nevertheless, spoke-type wheels are often used because they are light and have exhibit excellent cooling performance. Furthermore, according to the results of life analysis, aluminum wheels show improved resistance to fatigue compared to steel wheels.

Evaluation of Flexible Complementary Inverters Based on Pentacene and IGZO Thin Film Transistors

  • Kim, D.I.;Hwang, B.U.;Jeon, H.S.;Bae, B.S.;Lee, H.J.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.154-154
    • /
    • 2012
  • Flexible complementary inverters based on thin-film transistors (TFTs) are important because they have low power consumption and high voltage gain compared to single type circuits. We have manufactured flexible complementary inverters using pentacene and amorphous indium gallium zinc oxide (IGZO) for the p-channel and n-channel, respectively. The circuits were fabricated on polyimide (PI) substrate. Firstly, a thin poly-4-vinyl phenol (PVP) layer was spin coated on PI substrate to make a smooth surface with rms surface roughness of 0.3 nm, which was required to grow high quality IGZO layers. Then, Ni gate electrode was deposited on the PVP layer by e-beam evaporator. 400-nm-thick PVP and 20-nm-thick ALD Al2O3 dielectric was deposited in sequence as a double gate dielectric layer for high flexibility and low leakage current. Then, IGZO and pentacene semiconductor layers were deposited by rf sputter and thermal evaporator, respectively, using shadow masks. Finally, Al and Au source/drain electrodes of 70 nm were respectively deposited on each semiconductor layer using shadow masks by thermal evaporator. The characteristics of TFTs and inverters were evaluated at different bending radii. The applied strain led to change in voltage transfer characteristics of complementary inverters as well as source-drain saturation current, field effect mobility and threshold voltage of TFTs. The switching threshold voltage of fabricated inverters was decreased with increasing bending radius, which is related to change in parameters of TFTs. Throughout the bending experiments, relationship between circuit performance and TFT characteristics under mechanical deformation could be elucidated.

  • PDF

Numerical Simulation of Dynamic Soil-pile-structure Interaction in Liquefiable Sand (액상화 가능한 지반에 근입된 지반-말뚝-구조물 동적 상호작용의 수치 모델링)

  • Kwon, Sun-Yong;Yoo, Min-Taek;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.29-38
    • /
    • 2018
  • Three-dimensional continuum modeling of dynamic soil-pile-structure interaction embedded in a liquefiable sand was carried out. Finn model which can model liquefaction behavior using effective stress method was adopted to simulate development of pore water pressure according to shear deformation of soil directly in real time. Finn model was incorporated into Non-linear elastic, Mohr-Coulomb plastic model. Calibration of proposed modeling method was performed by comparing the results with those of the centrifuge tests performed by Wilson (1998). Excess pore pressure ratio, pile bending moment, pile head displacement-time history according to depth calculated by numerical analysis agreed reasonably well with the test results. Validation of the proposed modeling method was later performed using another test case, and good agreement between the computed and measured values was observed.

Analysis of Motion of Batoid Fins for Thrust Generation by Using Fluid-Structure Interaction Method (추진력 생성을 위한 가오리 날개 짓의 유체-구조연성 수치해석)

  • Kwon, Dong-Hyun;Lee, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1575-1580
    • /
    • 2010
  • Recently, the development of bio-mimetic underwater vehicles that can emulate the characteristic movements of marine fish and mammals has attracted considerable attention. In this study, the motion of the batoid (i.e., cownose ray) fin that facilitates excellent cruising and maneuvering during underwater movement has been studied. The velocity achieved and distance covered with each fin movement are numerically studied. A fluid-structure interaction method is used to perform 3D time-dependent numerical analysis, wherein an adaptive mesh is employed to account for the large deformation of a fin interacting with a fluid. The results of a preliminary study show that the thrust of a ray fin is highly dependent on the frequency. Further, once the fin amplitude required for generating a given thrust is evaluated for the conditions experienced by an actual ray, the frequency and amplitude values for achieving better thrust are determined.

Numerical Study on the Effects of Geosynthetic Reinforcement on the Pile-supported Embankment (수치해석을 통한 성토지지말뚝에 대한 토목섬유 보강 효과 분석)

  • Lee, Su-Hyung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.276-284
    • /
    • 2009
  • Recently pile-supported embankments have emerged as an optimum method when the rapid construction and strict deformation of structures are required on soft soils. Especially geosynthetic-reinforced and pile-supported (GRPS) embankments are used worldwide as they can provide economic and effective solutions. However the load transfer mechanism in GRPS embankments is very complex, and not yet fully understood. Particularly the purpose and effect of geosynthetic inclusion are ambiguous and considered as an auxiliary measure assisting the arching effect of piles. Numerical parametric study using 3D finite element method has been conducted to investigate the effect of geosynthetic reinforcement on the load transfer mechanism of GRPS embankments. Numerical results suggested that as more stiffer geosynthetic is included, arching effect decreases considerably and the load concentration to the piles mostly caused by tension effect of geosynthetic. This finding is contradictory to the common understanding that geosynthetic inclusion only enhance the efficiency of load transfer. Consequently the design parameters determined from the numerical analyses are compared with those of three existing design methods. The problems of the existing methods are discussed.

A Study on the Rapid Manufacturing for Jewelry Master Patterns (주얼리용 마스터패턴의 쾌속제작에 관한 연구)

  • 주영철;이창훈;송오성
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.2
    • /
    • pp.110-114
    • /
    • 2002
  • The master pattern manufacturing process is one of the most important processes in jewelry industry because the process takes 20% of total jewelry manufacturing costs. The previous jewelry manufacturing process has many steps of "rough design${\leftrightarro}$ detailed drawing${\leftrightarro}$ wax pattern manufacturing ${\leftrightarro}$ lime soda flask mold manufacturing ${\leftrightarro}$ silver master pattern manufacturing ${\leftrightarro}$ mass production of wax pattern ${\leftrightarro}$ investment casting process ${\leftrightarro}$ final jewelry product." A novel process that reduces processing steps by using a rapid prototyping system (RP) has been suggested. The process is "3D CAD design ${\leftrightarro}$ DuraForm mold manufacturing by RP ${\leftrightarro}$ manufacturing master pattern by low melting alloy ${\leftrightarro}$ mass production of wax pattern ${\leftrightarro}$ investment casting process${\leftrightarro}$ final jewelry product." Molds are made with DuraForm powder, of which melting temperature is 19$0^{\circ}C$, by a selective laster sintering type RP. An alloy of Pb-Sn-Bi-Cd, of which melting temperature is $70^{\circ}C$, is casted in the DuraForm molds. Spheres and rings of diameter 20 mm are made by this process. The dimension deformation rate is less than 2%, and the post processing of the castings is convenient. The casting made by the suggested process can be used as a master pattern of jewelry products.of jewelry products.

  • PDF