• 제목/요약/키워드: 3D Coordinates

검색결과 618건 처리시간 0.029초

원형관에서의 음해법을 이용한 차원 3차원 비압축성 부정류 흐름에 관한 수치모의 (Three Dimensional Incompressible Unsteady Flows in a Circular Tube Using the Navier-Stokes Equations With Beam and Warming Method)

  • 박기두;이길성;성진영
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1624-1629
    • /
    • 2008
  • The governing equations in generalized curvilinear coordinates for a 3D pulsatile flow are the Incompressible Navier-Stokes (INS) equations with the artificial dissipative terms and continuity equation discretized using a second-order accurate, finite volume method on the nonstaggered computational grid. This method adopts a dual or pseudo time-stepping Artificial Compressibility (AC) method integrated in pseudo-time. The computational technique implements the implicit approximate factorization method of the Beam and Warming method (1978), which is the extension of the Alternate Direction Implicit (ADI) method. The algorithm yields practically identical velocity profiles and secondary flows that are in excellent overall agreement with an experimental measurement (Rindt & Steenhoven, 1991).

  • PDF

다중격자와 인공점성항을 이용한 3차원 비압축성 흐름에 관한 수치모형 해석 (Numerical Simulation of Three Dimensional Incompressible Flows Using the Navier-Stokes Equations with the Artificial Dissipation Terms and a Multigrid Method)

  • 박기두;이길성
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.1392-1396
    • /
    • 2007
  • The governing equations in generalized curvilinear coordinates for 3D laminar flow are the Incompressible Navier-Stokes (INS) equations with the artificial dissipative terms. and continuity equation discretized using a second-order accurate, finite volume method on the nonstaggered computational grid. This method adopts a dual or pseudo time-stepping Artificial Compressibility (AC) method integrated in pseudo-time. Multigrid methods are also applied because solving the equations on the coarse grids requires much less computational effort per iteration than on the fine grid. The algorithm yields practically identical velocity profiles and secondary flows that are in excellent overall agreement with an experimental measurement (Humphrey et al., 1977).

  • PDF

RTK 시스템과 3차원 게임엔진을 이용한 실시간 지하 매설물 관리 시스템 개발 (Development of Real-time Underground Utilities Management System using Real-time Kinematics Systems and 3D Game Engines)

  • 김성호
    • 한국콘텐츠학회논문지
    • /
    • 제11권8호
    • /
    • pp.51-58
    • /
    • 2011
  • 본 논문은 RTK 시스템과 3D 게임엔진을 사용하여 지하 매설물의 각종 속성 정보를 실시간으로 DBMS로 저장하고 3D 뷰어에서 디스플레이 및 관리하기 위한 시스템 개발에 관하여 기술한다. 즉, 본 시스템은 RTK 시스템으로부터 측정 및 입력된 지하 매설물의 속성 값을 3D 게임엔진이 무선통신으로 입력받아 3D 뷰어에서 지하 매설물을 생성, 삭제 및 수정 등의 관리를 실시간으로 할 수 있게 한다. 지하 매설물에 대한 좌표는 GPS로 측정하는데, RTK 시스템을 위한 지적기준점은 기존의 도근점들 중 하나를 사용하고 이를 중심으로 보정 과정을 거친다. 3D 게임엔진은 RTK 시스템과의 무선통신, 지형 및 지하 매설물에 대한 3D 디스플레이, 지하 매설물의 속성 입력 및 등록 등 지하 매설물을 3D으로 관리하기 위한 기능들을 가지고 있다. 본 시스템은 지하 매설물의 부정확한 공간적 위치 좌표로 인한 각종 사고를 예방하고 정확한 관리를 할 수 있다는 면에서 응용 가능성이 매우 높으며, 신도시 개발을 시작하는 시점에서 매우 유용하게 활용될 수 있다.

능동전력필터의 간단한 순시전력이론과 수정된 보상성능 평가법 (A Simple Instantaneous Power Theory and Modified Compensation Performance Evaluation of Active Power Filters)

  • 정영국;유광호;김영철;양승학;김우용;임영철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 F
    • /
    • pp.2549-2552
    • /
    • 1999
  • The fictitious power theory in time domain is very easy to understand, but power analyzing time of active power is increased, because power is analyzed using signal techniques based on the correlation between voltage and current waveforms. Also, conventional methods in time/frequency domain to evaluate the compensation performance of active power filters are not provided easy solutions. So, the authors have previously proposed 3-D current coordinates which is composed into active component, fundamental reactive component and distorted component of nonlinear loads current. This method has excellent performance, but can not evaluate the characteristics of nonlinear load current whether inductive or capacitive. Therefore, To overcome problems mentioned previously, this paper deals with the simple instantaneous power theory and the modified 3-D current coordinates for evaluating the compensation performance of active power filters. To confirm the validity, active power filters simulator is developed using C-language. From the simulation, results are discussed their utility.

  • PDF

Experimental Validation of Numerical Model for Turbulent Flow in a Tangentially Fired Boiler with Platen Reheaters

  • Zheng, Chang-Hao;Xu, Xu-Chang;Park, Jong-Wook
    • Journal of Mechanical Science and Technology
    • /
    • 제17권1호
    • /
    • pp.129-138
    • /
    • 2003
  • A 1 : 20 laboratory scale test rig of a 200 MW tangentially fired boiler is built up with completely simulated structures such as platen heaters and burners. Iso-thermal turbulent flow in the boiler is mapped by 3-D PDA (Particle Dynamic Analyzer). The 3-D numerical models for the same case are proposed based on the solution of к-$\varepsilon$ model closed RANS (Reynolds time-Averaged Navier-Stokes) equations, which are written in the framework of general coordinates and discretized in the corresponding body-fitted meshes. Not only are the grid lines arranged to fit the inner/outer boundaries. but also to align with the streamlines to the best possibility in order to reduce the NDE (numerical diffusion errors). Extensive comparisons of profiles of mean velocities are carried out between experiment and calculation. Predicted velocities in burner region were quantitatively similar with measured ones, while those in other area have same tendency with experimental counterpart.

Real-Time Eye Tracking Using IR Stereo Camera for Indoor and Outdoor Environments

  • Lim, Sungsoo;Lee, Daeho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권8호
    • /
    • pp.3965-3983
    • /
    • 2017
  • We propose a novel eye tracking method that can estimate 3D world coordinates using an infrared (IR) stereo camera for indoor and outdoor environments. This method first detects dark evidences such as eyes, eyebrows and mouths by fast multi-level thresholding. Among these evidences, eye pair evidences are detected by evidential reasoning and geometrical rules. For robust accuracy, two classifiers based on multiple layer perceptron (MLP) using gradient local binary patterns (GLBPs) verify whether the detected evidences are real eye pairs or not. Finally, the 3D world coordinates of detected eyes are calculated by region-based stereo matching. Compared with other eye detection methods, the proposed method can detect the eyes of people wearing sunglasses due to the use of the IR spectrum. Especially, when people are in dark environments such as driving at nighttime, driving in an indoor carpark, or passing through a tunnel, human eyes can be robustly detected because we use active IR illuminators. In the experimental results, it is shown that the proposed method can detect eye pairs with high performance in real-time under variable illumination conditions. Therefore, the proposed method can contribute to human-computer interactions (HCIs) and intelligent transportation systems (ITSs) applications such as gaze tracking, windshield head-up display and drowsiness detection.

방사선수술을 위한 3차원 정위 시스템 및 방사선량 측정 시스템 개발 (Development of 3-D Stereotactic Localization System and Radiation Measurement for Stereotactic Radiosurgery)

  • 서태석;서덕영;박승훈;장홍석;최보영;윤세철;신경섭;박용휘;김일환;강위생;하성환;박찬일
    • Journal of Radiation Protection and Research
    • /
    • 제20권1호
    • /
    • pp.25-36
    • /
    • 1995
  • The purpose of this research is to develop stereotactic localization and radiation measurement system for the efficient and precise radiosurgery. The algorithm to obtain a 3-D stereotactic coordinates of the target has been developed using a Fisher CT or angio localization. The procedure of stereotactic localization was programmed with PC computer, and consists of three steps: (1) transferring patient images into PC; (2) marking the position of target and reference points of the localizer from the patient image; (3) computing the stereotactic 3-D coordinates of target associated with position information of localizer. Coordinate transformation was quickly done on a real time base. The difference of coordinates computed from between Angio and CT localization method was within 2 mm, which could be generally accepted for the reliability of the localization system developed. We measured dose distribution in small fields of NEC 6 MVX linear accelerator using various detector; ion chamber, film, diode. Specific quantities measured include output factor, percent depth dose (PDD), tissue maximum ratio (TMR), off-axis ratio (OAR). There was small variation of measured data according to the different kinds of detectors used. The overall trends of measured beam data were similar enough to rely on our measurement. The measurement was performed with the use of hand-made spherical water phantom and film for standard arc set-up. We obtained the dose distribution as we expected. In conclusion, PC-based 3-D stereotactic localization system was developed to determine the stereotactic coordinate of the target. A convenient technique for the small field measurement was demonstrated. Those methods will be much helpful for the stereotactic radiosurgery.

  • PDF

로봇 팔의 뇌 신호로부터 유도된 3D 좌표 추적을 위한 Guidance Law 적용에 관한 연구 (A Study on Applying Guidance Laws in Developing Algorithm which Enables Robot Arm to Trace 3D Coordinates Derived from Brain Signal)

  • 김윤재;박성우;김원식;염홍기;서한길;이용우;방문석;정천기;오병모;김준식;김유단;김성완
    • 대한의용생체공학회:의공학회지
    • /
    • 제35권3호
    • /
    • pp.50-54
    • /
    • 2014
  • It is being tried to control robot arm using brain signal in the field of brain-machine interface (BMI). This study is focused on applying guidance laws for efficient robot arm control using 3D coordinates obtained from Magnetoencephalography (MEG) signal which represents movement of upper limb. The 3D coordinates obtained from brain signal is inappropriate to be used directly because of the spatial difference between human upper limb and robot arm's end-effector. The spatial difference makes the robot arm to be controlled from a third-person point of view with assist of visual feedback. To resolve this inconvenience, guidance laws which are frequently used for tactical ballistic missile are applied. It could be applied for the users to control robot arm from a first-person point of view which is expected to be more comfortable. The algorithm which enables robot arm to trace MEG signal is provided in this study. The algorithm is simulated and applied to 6-DOF robot arm for verification. The result was satisfactory and demonstrated a possibility in decreasing the training period and increasing the rate of success for certain tasks such as gripping object.

A Study on 3D Reconstruction of Urban Area

  • Park Y. M.;Kwon K. R.;Lee K. W.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.470-473
    • /
    • 2005
  • This paper proposes a reconstruction method for the shape and color information of 3-dimensional buildings. The proposed method is range scanning by laser range finder and image coordinates' color information mapping to laser coordinate by a fixed CCD camera on laser range finder. And we make a 'Far-View' using high-resolution satellite image. The 'Far-View' is created that the height of building using DEM after contours of building extraction. The user select a region of 'Far View' and then, appear detailed 3D-reconstruction of building The outcomes apply to city plan, 3D-environment game and movie background etc.

  • PDF

2-D 슬리트광 비젼 센서를 이용한 물체의 자세측정 (The Position Estimation of a Body Using 2-D Slit Light Vision Sensors)

  • 김정관;한명철
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.133-142
    • /
    • 1999
  • We introduce the algorithms of 2-D and 3-D position estimation using 2-D vision sensors. The sensors used in this research issue red laser slit light to the body. So, it is very convenient to obtain the coordinates of corner point or edge in sensor coordinate. Since the measured points are normally not fixed in the body coordinate, the additional conditions, that corner lines or edges are straight and fixed in the body coordinate, are used to find out the position and orientation of the body. In the case of 2-D motional body, we can find the solution analytically. But in the case of 3-D motional body, linearization technique and least mean squares method are used because of hard nonlinearity.

  • PDF