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Numerical Simulation of Three Dimensional Incompressible Flows
Using the Navier-Stokes Equations with the Artificial Dissipation
Terms and a Multigrid Method
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Abstract

The governing equations in generalized curvilinear coordinates for 3D laminar flow are the
Incompressible Navier-Stokes (INS) equations with the artificial dissipative terms. and continuity equation
discretized using a second-order accurate, finite volume method on the nonstaggered computational grid.
This method adopts a dual or pseudo time—stepping Artificial Compressibility (AC) method integrated in
pseudo-time. Multigrid methods are also applied because solving the equations on the coarse grids
requires much less computational effort per iteration than on the fine grid. The algorithm yields
practically identical velocity profiles and secondary flows that are in excellent overall agreement with an

experimental measurement (Humphrey et al., 1977).
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1. Introduction

The past decade has witnessed a great deal of progress in the area of computational fluid
dynamics (CFD). Developments in computer technology as well as in advanced numerical
algorithms have enabled attempts to be made towards analysis and numerical solution of
highly complex flow problems. However, we can investigate some difference between
numerical solution and experimental data as to use the application of the numerical solution.
Almost numerical errors that appear in the literatures (Ferziger et al., 1994; Figitas et al.,
1993) are associated with the discretized convective terms in motion even if turbulence
modeling is not included. The numerical method needs to introduce the artificial dissipation
terms (Rogers et al., 1990; Rogers et al., 1991) in order to eliminate the numerical errors.
Multigrid method applies an iterative scheme in this study since the total amount of
computational effort does not significantly increase even though the method converges faster
(Tang et al., 2003). This numerical study with the artificial dissipation terms for the

convective terms is employed and the multigrid method is also implemented.
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2. Governing Equations

The governing equations in generalized curvilinear coordinates, using dual or pseudo
time-stepping Artificial Compressibility (AC) method to couple pressure and velocities, are the
three—dimensional, incompressible Navier-Stokes (NS) equations and continuity equation,

nondimensionlized by  p, U,,and L,. The governing equations follow
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where x, are the Cartesian coordinates z, y, and z. ¢! are curvilinear coordinates &, 7,

mli

and (¢, respectively, ézlm are the metrics of the geometric transformation, g are the

components of the contravariant metric tensor, and J 1is the Jacobian of the geometric
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transformation. U' are the contravariant velocity components, U'=u u,, are the

Cartesian velocity components, and u, v, and w, and p is the static pressure divided by
the density. Finally, Re is the Reynolds number of the flow, which is based on
characteristic length and velocity scales and the kinematic viscosity of the fluid.

The governing equations are discretized in strong conservation form using a three—point
backward, second—order accurate Euler implicit scheme for the temporal derivative and
three-point, second order accurate central differencing for the spatial derivatives,
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where
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The flux F is the flux F at the cell interfaces and D is the artificial dissipation flux,
especially, the matrix—valued scheme (Lin and Sotiropoulos, 1997),

Fitqn= E(Efj,L:+F'il+l,j,k)+ Dl 1/oiin 3
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where ¢ is a constant, |4 is the absolute value of the Jacobian matrix A'=aF"/8Q.
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3. Numerical Methods

The efficiency and robustness of the algorithm can be enhanced by implementing the local
dual-time-stepping and multigrid methods are also applied because solving the equations on
the coarse grids requires much less computational effort per iteration than on the fine grid.

It is marched in time to advance the solution to the next time step, and couples the
pressure and velocity fields at the same level by adopting compressible flow techniques. A
pseudo-time derivative term is added to the discrete governing equations until the
pseudo-time derivative is reduced to a small residual and the time accurate NS equations are
satisfied at the next physical time step. However, the unsteady problem is excluded in this

study since we just focus on the multigrid method and the effect of artificial dissipation.
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where A7 is the pesudo-time step increment, «,, are the Runge-Kutta coefficients

m

(=1/m, form=1,2,3,4). Thus, @ terms at the pesudo-time level is treated as

Qn+1,0: [Qn-!—l]"7 Q71+1,4___ [Qn+1]T+AT.

The local time step is computed

CFL

AT= max (/\5&)\62,)\{3)

(6)

where X, is the spectral radii of the Jacobian matrices, CFL is the
Courant-Friedrich-Lewis number.

As shown in Fig 1, the multigrid cycling strategy to implement the multigrid method is
the V-cycle using the Runge—-Kutta scheme. The equation is computed on h grid level
and the results are injected to 2h grid level. The equation is also calculated on 2h grid
level, and then the procedure is continued to 4h grid level until the coarsest grid is
reached. The data is prolonged from 4h grid level, through 2h grid level, to h grid level.

Boundary conditions are specified at the inlet, outlet, and solid wall boundaries. Inflow
boundary conditions are implemented by Dirichlet conditions for the fully developed velocity
distribution (White, 1991). No slip and no flux boundary conditions are used on the solid
walls. Zero gradient boundary conditions at the outflow boundary and on the symmetry plane
( at z=0) are used (Neumann condition). The pressures at all boundaries are obtained

by linear extrapolation from interior nodes.
4. Results and Conclusion

The phenomenon of steady fully developed laminar flow of viscous fluid in curved circular
tube is now well understood and the accurate friction factor correlation equations are available
in the literatures (Cheng et al., 1976; Taylor et al.,, 1981; Humphery et al., 1997). The
numerical solution is to validate the accuracy of this solver for steady laminar flow through a

90° curved rectangular tube. This test case was experimentally studied by Humphery et al.
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(1977) who carried out velocity measurements at Reynolds number e = 790, based on the
bulk velocity and the hydraulic diameter. To evaluate the performance of the multigrid
method in a 3D flow of a curved 90 degree square bend, we choose these test cases: The
finest meshes are 49 X 41 X 21 grid nodes, the coarser meshes are 49 X 21 X 11 nodes, and

finally, 49 X 11 X 6 nodes are selected as the coarsest mesh. The CFL number used in this
numerical study is CFL = 3.0.

restrict

restrict

Fig 1. Multigrid V—cycle strategy
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Fig 2. Pressure and velocity distributions Fig 3. Secondary flow at 6=90"
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Fig 4. Streamwise velocity profiles along

Fig 5. Streamwise velocity profiles along
radial lines at z=0 and 6=0"

radial lines at z=0 and 6=90"
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As shown in Fig 2 to Fig 5, this algorithm yields practically identical velocity profiles and
secondary flows that are in excellent overall agreement with an experimental measurement
(Humphrey et al., 1977).
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