• Title/Summary/Keyword: 3D Cone Beam CT

Search Result 67, Processing Time 0.023 seconds

A Study on Mechanical Errors in Cone Beam Computed Tomography(CBCT) System (콘빔 전산화단층촬영(CBCT) 시스템에서 기계적 오류에 관한 연구)

  • Lee, Yi-Seong;Yoo, Eun-Jeong;Kim, Seung-Keun;Choi, Kyoung-Sik;Lee, Jeong-Woo;Suh, Tae-Suk;Kim, Joeng-Koo
    • Journal of radiological science and technology
    • /
    • v.36 no.2
    • /
    • pp.123-129
    • /
    • 2013
  • This study investigated the rate of setup variance by the rotating unbalance of gantry in image-guided radiation therapy. The equipments used linear accelerator(Elekta Synergy TM, UK) and a three-dimensional volume imaging mode(3D Volume View) in cone beam computed tomography(CBCT) system. 2D images obtained by rotating $360^{\circ}$and $180^{\circ}$ were reconstructed to 3D image. Catpan503 phantom and homogeneous phantom were used to measure the setup errors. Ball-bearing phantom was used to check the rotation axis of the CBCT. The volume image from CBCT using Catphan503 phantom and homogeneous phantom were analyzed and compared to images from conventional CT in the six dimensional view(X, Y, Z, Roll, Pitch, and Yaw). The variance ratio of setup error were difference in X 0.6 mm, Y 0.5 mm Z 0.5 mm when the gantry rotated $360^{\circ}$ in orthogonal coordinate. whereas rotated $180^{\circ}$, the error measured 0.9 mm, 0.2 mm, 0.3 mm in X, Y, Z respectively. In the rotating coordinates, the more increased the rotating unbalance, the more raised average ratio of setup errors. The resolution of CBCT images showed 2 level of difference in the table recommended. CBCT had a good agreement compared to each recommended values which is the mechanical safety, geometry accuracy and image quality. The rotating unbalance of gentry vary hardly in orthogonal coordinate. However, in rotating coordinate of gantry exceeded the ${\pm}1^{\circ}$ of recommended value. Therefore, when we do sophisticated radiation therapy six dimensional correction is needed.

Root and Canal Morphology of Maxillary Primary Molar using CBCT and 3D CT (CBCT 및 3D CT를 활용한 상악 유구치 치근과 근관 형태)

  • Kim, Joon Hee;Kim, Hyuntae;Shin, Teo Jeon;Hyun, Hong-Keun;Kim, Young-Jae;Kim, Jung-Wook;Jang, Ki-Taeg;Song, Ji-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.4
    • /
    • pp.437-448
    • /
    • 2021
  • The purpose of this study is to analyze morphological characteristics of maxillary primary molar's root and root canal. 268 children aged 3 - 7 years (175 boys, 93 girls) who had CBCT (152 children) and 3D CT (116 children) taken in Seoul National University Dental Hospital from January 2006 to April 2020 were included. The number of roots and root canals were analyzed in 1002 teeth without any root resorption or periapical pathologies. Curvature, angulation, length of root and root canal, as well as cross-sectional shapes of the root canal were analyzed in 218 teeth. By using Mimics and 3-Matics software, volume, surface area, and volume ratio of root canal was analyzed in 48 teeth. More than half of maxillary primary molars have 3 roots and 3 root canals. The degree of symmetry of root canal type was about 0.63 (Cohen's kappa coefficient). The most frequent shape of roots and canals was linear in 1st primary molars and curved in 2nd primary molars. Angulation, length of root and root canals was the largest on palatal roots. Most teeth showed ovoid or round shapes at apex. The largest root canal volume, surface area, volume ratio was found in the palatal roots.

The Effect of Patients Positioning System on the Prescription Dose in Radiation Therapy (방사선치료 시 자세확인시스템이 처방선량에 미치는 영향)

  • Kim, Jeong-Ho;Bae, Seok-Hwan
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.613-620
    • /
    • 2017
  • Planning dose must be delivered accurately for radiation therapy. Also, It must be needed accurately setup. However, patient positioning images were need for accuracy setup. Then patient positioning images is followed by additional exposure to radiation. For 45 points in the phantom, we measured the doses for 6 MV and 10 MV photon beams, OBI(On Board Imager) and CBCT(Conebeam Computed Tomography) using OSLD(Optically Stimulated Luminescent Dosimeter). We compared the differences in the cases where posture confirmation imaging at each point was added to the treatment dose. Also, we tried to propose a photography cycle that satisfies the 5% recommended by AAPM(The American Association of Physicists in Medicine). As a result, a maximum of 98.6 cGy was obtained at a minimum of 45.27 cGy at the 6 MV, a maximum of 99.66 cGy at a minimum of 53.34 cGy at the 10 MV, a maximum of 2.64 cGy at the minimum of 0.19 cGy for the OBI and a maximum of 17.18 cGy at the minimum of 0.54 cGy for the CBCT.The ratio of the radiation dose to the treatment dose is 3.49% in the case of 2D imaging and the maximum is 22.65% in the case of 3D imaging. Therefore, tolerance of 2D image is 1 exposure per day, and 3D image is 1 exposure per week. And it is need to calculation of separate in the parallelism at additional study.

Quantitative Evaluation of Patient Positioning Error Using CBCT 3D Gamma Density Analysis in Radiotherapy

  • Lee, Soon Sung;Min, Chul Kee;Cho, Gyu Suk;Han, Soorim;Kim, Kum Bae;Jung, Haijo;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.149-155
    • /
    • 2017
  • Radiotherapy patients should maintain their treatment position as patient setup is very important for accurate treatment. In this study, we evaluated patient setup error quantitatively according to Cone-Beam Computed Tomography (CBCT) Gamma Density Analysis using Mobius CBCT. The adjusted setup error to the $QUASAR^{TM}$ phantom was moved artificially in the superior and lateral direction, and then we acquired the CBCT image according to the phantom setup error. To analyze the treatment setup error quantitatively, we compared values suggested in the CBCT system with the Mobius CBCT. This allowed us to evaluate the setup error using CBCT Gamma Density Analysis by comparing the planning CT with the CBCT. In addition, we acquired the 3D-gamma density passing rate according to the gamma density criteria and phantom setup error. When the movement was adjusted to only the phantom body or 3 cm diameter target inserted in the phantom, the CBCT system had a difference of approximately 1 mm, while Mobius CBCT had a difference of under 0.5 mm compared to the real setup error. When the phantom body and target moved 20 mm in the Mobius CBCT, there are 17.9 mm and 13.5 mm differences in the lateral and superior directions, respectively. The CBCT gamma density passing rate was reduced according to the increase in setup error, and the gamma density criteria of 0.1 g/cc/3 mm has 10% lower passing rate than the other density criteria. Mobius CBCT had a 2 mm setup error compared with the actual setup error. However, the difference was greater than 10 mm when the phantom body moved 20 mm with the target. Therefore, we should pay close attention when the patient's anatomy changes.

Evaluation on Usefulness of Stereotactic Radio Surgery using $Fraxion^{(R)}$ System ($Fraxion^{(R)}$ System을 이용한 뇌 정위적 방사선 수술 유용성 평가)

  • Kim, Tae Won;Park, Kwang Woo;Ha, Jin Sook;Jeon, Mi Jin;Cho, Yoon Jin;Kim, Sei Joon;Kim, Jong Dae;Shin, Dong Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.345-354
    • /
    • 2014
  • Purpose : We evaluated the usefulness of $Fraxion^{(R)}$ system and s-thermoplastic mask by analyzing setup error when stereotactic radiousurgery (SRS) was treated for brain metastasis. Materials and Methods : 6 patients who received definite diagnosis as brain metastasis between May 2014 and October 2014 were selected. 3 patients were immobilized s-thermoplastic mask and mouthpiece (group1), while $Fraxion^{(R)}$ system was used for the other 3 patients (group2). Cone Beam Computerized Tomography (CBCT) scan was acquired to register planning CT scan. The registration offset was compared for each group. We compared and reported the errors using maximum, minimum, mean, and standard deviation of registration offsets. Furthermore, We used the same method as patient specific quality assurance to verify absorbed dose of PTV. Results : The setup error which is registration offset was reduced 83% in x, 40% in y, and 92% in z-direction when $Fraxion^{(R)}$ system was used compared to the case of using s-thermoplastic mask and mouthpiece. In addition, using $Fraxion^{(R)}$ system showed improved results in rotational components, pitch (rotation along x-axis), roll (y), and yaw (z) which were reduced 64, 88, and 87% respectively compared to the case of using s-thermoplastic mask and mouthpiece. In dosimetry results, when s-thermoplastic mask and mouthpiece used, absorbed dose was reduce 83% compared to before and after registration. However, using $Fraxion^{(R)}$ system showed only 1.9%. All percentage were calculated with respect to average value. Conclusion : Using $Fraxion^{(R)}$ system including mouthpiece, Fraxion frame, frontpiece, and thermoplastic mask, showed better repeatability and precision compared to using s-thermoplastic mask and mouthpiece, which is consequently considered as more improved immobilization system.

Changes of lip morphology following mandibular setback surgery using 3D cone-beam computed tomography images

  • Paek, Seung Jae;Yoo, Ji Yong;Lee, Jang Won;Park, Won-Jong;Chee, Young Deok;Choi, Moon Gi;Choi, Eun Joo;Kwon, Kyung-Hwan
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.38.1-38.10
    • /
    • 2016
  • Background: The aims of this study are to evaluate the lip morphology and change of lip commissure after mandibular setback surgery (MSS) for class III patients and analyze association between the amount of mandibular setback and change of lip morphology. Methods: The samples consisted of 14 class III patients treated with MSS using bilateral sagittal split ramus osteotomy. Lateral cephalogram and cone-beam CT were taken before and about 6 months after MSS. Changes in landmarks and variables were measured with 3D software program $Ondemand^{TM}$. Paired and independent t tests were performed for statistical analysis. Results: Landmarks in the mouth corner (cheilion, Ch) moved backward and downward (p < .005, p < .01). However, cheilion width was not statistically significantly changed. Landmark in labrale superius (Ls) was not altered significantly. Upper lip prominence angle (ChRt-Ls-$ChLt^{\circ}$) became acute. Landmarks in stomion (Stm), labrale inferius (Li) moved backward (p < .005, p < .001). Lower lip prominence angle (ChRt-Li-$ChLt^{\circ}$) became obtuse (p < .001). Height of the upper and lower lips was not altered significantly. Length of the upper lip vermilion was increased (p =< 0.01), and length of the lower lip vermilion was decreased (p < .05). Lip area on frontal view was not statistically significantly changed, but the upper lip area on lateral view was increased and change of the lower lip area decreased (p > .05, p < .005). On lateral view, upper lip prominent point (UP) moved downward and stomion moved backward and upward and the angle of Ls-UP-Stm ($^{\circ}$) was decreased. Lower lip prominent point (LP) moved backward and downward, and the angle of Stm-LP-Li ($^{\circ}$) was increased. Li moved backward. Finally, landmarks in the lower incisor tip (L1) moved backward and upward, but stomion moved downward. After surgery, lower incisor tip (L1) was positioned more superiorly than stomion (p < .05). There were significant associations between horizontal soft tissue and corresponding hard tissue. The posterior movement of L1 was related to statistically significantly about backward and downward movement of cheilion. Conclusions: The lip morphology of patients with dento-skeletal class III malocclusion shows a significant improvement after orthognathic surgery. Three-dimensional lip morphology changes in class III patients after MSS exhibited that cheilion moved backward and downward, upper lip projection angle became acute, lower lip projection angle became obtuse, change of upper lip area on lateral view was increased, change of lower lip area decreased, and morphology of lower lip was protruding. L1 was concerned with the lip tissue change in statistically significant way.

Evaluation of Dose Change by Using the Deformable Image Registration (DIR) on the Intensity Modulated Radiation Therapy (IMRT) with Glottis Cancer (성문암 세기조절 방사선치료에서 변형영상정합을 이용한 선량변화 평가)

  • Kim, Woo Chul;Min, Chul Kee;Lee, Suk;Choi, Sang Hyoun;Cho, Kwang Hwan;Jung, Jae Hong;Kim, Eun Seog;Yeo, Seung-Gu;Kwon, Soo-Il;Lee, Kil-Dong
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.167-175
    • /
    • 2014
  • The purpose of this study is to evaluate the variation of the dose which is delivered to the patients with glottis cancer under IMRT (intensity modulated radiation therapy) by using the 3D registration with CBCT (cone beam CT) images and the DIR (deformable image registration) techniques. The CBCT images which were obtained at a one-week interval were reconstructed by using B-spline algorithm in DIR system, and doses were recalculated based on the newly obtained CBCT images. The dose distributions to the tumor and the critical organs were compared with reference. For the change of volume depending on weight at 3 to 5 weeks, there was increased of 1.38~2.04 kg on average. For the body surface depending on weight, there was decreased of 2.1 mm. The dose with transmitted to the carotid since three weeks was increased compared be more than 8.76% planned, and the thyroid gland was decreased to 26.4%. For the physical evaluation factors of the tumor, PITV, TCI, rDHI, mDHI, and CN were decreased to 4.32%, 5.78%, 44.54%, 12.32%, and 7.11%, respectively. Moreover, $D_{max}$, $D_{mean}$, $V_{67.50}$, and $D_{95}$ for PTV were increased or decreased to 2.99%, 1.52%, 5.78%, and 11.94%, respectively. Although there was no change of volume depending on weight, the change of body types occurred, and IMRT with the narrow composure margin sensitively responded to such a changing. For the glottis IMRT, the patient's weight changes should be observed and recorded to evaluate the actual dose distribution by using the DIR techniques, and more the adaptive treatment planning during the treatment course is needed to deliver the accurate dose to the patients.