• Title/Summary/Keyword: 3D Building Height Extraction

Search Result 20, Processing Time 0.026 seconds

Building Extraction and 3D Modeling from Airborne Laser Scanning Data

  • Lee, Jeong-Ho;Han, Soo-Hee;Byun, Young-Gi;Yu, Ki-Yun;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.447-453
    • /
    • 2007
  • The demand for more accurate and realistic 3D urban models has been increasing more and more. Many studies have been conducted to extract 3D features from remote sensing data such as satellite images, aerial photos, and airborne laser scanning data. In this paper a technique is presented to extract and reconstruct 3D buildings in urban areas using airborne laser scanning data. Firstly all points in a building were divided into some groups by height difference. From segmented laser scanning data of irregularly distributed points we generalized and regularized building boundaries which better approximate the real boundaries. Then the roof points which are subject to the same groups were classified using pre-defined models by least squares fitting. Finally all parameters of the roof surfaces were determined and 3D building models were constructed. Some buildings with complex shapes were selected to test our presented algorithms. The results showed that proposed approach has good potential for reconstructing complex buildings in detail using only airborne laser scanning data.

Extraction of 3D Building Information by Modified Volumetric Shadow Analysis Using High Resolution Panchromatic and Multi-spectral Images (고해상도 전정색 영상과 다중분광 영상을 활용한 그림자 분석기반의 3차원 건물 정보 추출)

  • Lee, Taeyoon;Kim, Youn-Soo;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.499-508
    • /
    • 2013
  • This article presents a new method for semi-automatic extraction of building information (height, shape, and footprint location) from monoscopic urban scenes. The proposed method is to expand Semi-automatic Volumetric Shadow Analysis (SVSA), which can handle occluded building footprints or shadows semi-automatically. SVSA can extract wrong building information from a single high resolution satellite image because SVSA is influenced by extracted shadow area, image noise and objects around a building. The proposed method can reduce the disadvantage of SVSA by using multi-spectral images. The proposed method applies SVSA to panchromatic and multi-spectral images. Results of SVSA are used as parameters of a cost function. A building height with maximum value of the cost function is determined as actual building height. For performance evaluation, building heights extracted by SVSA and the proposed method from Kompsat-2 images were compared with reference heights extracted from stereo IKONOS. The result of performance evaluation shows the proposed method is a more accurate and stable method than SVSA.

Generation of 3-D City Model using Aerial Imagery (항공사진을 이용한 3차원 도시 모형 생성)

  • Yeu Bock Mo;Jin Kyeong Hyeok;Yoo Hwan Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.3
    • /
    • pp.233-238
    • /
    • 2005
  • 3-D virtual city model is becoming increasingly important for a number of GIS applications. For reconstruction of 3D building in urban area aerial images, satellite images, LIDAR data have been used mainly and most of researches related to 3-D reconstruction focus on development of method for extraction of building height and reconstruction of building. In case of automatically extracting and reconstructing of building height using only aerial images or satellite images, there are a lot of problems, such as mismatching that result from a geometric distortion of optical images. Therefore, researches of integrating optical images and existing digital map (1/1,000) has been in progress. In this paper, we focused on extracting of building height by means of interest points and vertical line locus method for reducing matching points. Also we used digital plotter in order to validate for the results in this study using aerial images (1/5,000) and existing digital map (1/1,000).

A Study on the Reproduction of 3-Dimensional Building Model from Single High Resolution Image without Meta Information (메타정보 없는 단일 고해상도 영상으로부터 3차원 건물 모델 생성에 관한 연구)

  • Lee, Tae-Yoon;Kim, Tae-Jung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.3
    • /
    • pp.71-79
    • /
    • 2009
  • We expanded the 3D building information extraction method using shadow and vertical line from single high resolution image with meta information into the method for single high resolution image without meta information. Our method guesses an azimuth angle and an elevation angle of the sensor and the sun using reference building, selected by user, on an image. For test, we used an IKONOS image and an image extracted from the Google Earth. We calculated the Root Mean Square (RMS) error of heights extracted by our method using the building height extracted from stereo IKONOS image as reference, and the RMS error from the IKONOS image and the Google Earth image was under than 3 m. We also calculated the RMS error of horizontality position by comparison between building position extracted from only the IKONOS image and it from 1:1,000 digital map, and the result was under than 3 m. This test results showed that the height pattern of building models by our method was similar with it by the method using meta information.

  • PDF

Building Boundary Extraction of Airborne LIDAR data by Image-Based and Point-Based Data Analysis (영상 및 점기반 자료처리에 의한 항공 라이다 자료의 건물경계추출)

  • Kim, Eui-Myoung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.43-52
    • /
    • 2009
  • LIDAR data, as the source of the 3D information of buildings, are used many modeling fields such as three-dimensional city models in urban planning and the visibility analysis of buildings. This study suggests a methodology, that is characterized by combining image-based and point-based process, for minimizing the user's intervention and automatically extracting building boundary only using the LIDAR data. Image processing methodology is firstly used to separate building and non-building regions from LIDAR data. Moreover, building regions are then classified main roof into remaining parts by the statistical analysis of height values, and the remaining parts are processed separately. Through the experimental results of study areas which exist many types of buildings, for example, apartment-type, stair-type, complex-type, etc. Approximately 90% building boundaries are automatically extracted by the proposed methodology.

  • PDF

A study on the classifying vehicles for traffic flow analysis using LiDAR DATA

  • Heo J.Y.;Choi J.W.;Kim Y.I.;Yu K.Y.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.633-636
    • /
    • 2004
  • Airborne laser scanning thechnology has been studied in many applications, DSM(Digital Surface Model) development, building extraction, 3D virtual city modeling. In this paper, we will evaluate the possibility of airborne laser scanning technology for transportation application, especially for recognizing moving vehicles on road. First, we initially segment the region of roads from all LiDAR DATA using the GIS map and intensity image. Secondly, the segmented region is divided into the roads and vehicles using the height threshold value of local based window. Finally, the vehicles will be classified into the several types of vehicles by MDC(Minimum Distance Classification) method using the vehicle's geometry information, height, length, width, etc

  • PDF

Urban Building Change Detection Using nDSM and Road Extraction (nDSM 및 도로망 추출 기법을 적용한 도심지 건물 변화탐지)

  • Jang, Yeong Jae;Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.237-246
    • /
    • 2020
  • Recently, as high resolution satellites data have been serviced, frequent DSM (Digital Surface Model) generation over urban areas has been possible. In addition, it is possible to detect changes using a high-resolution DSM at building level such that various methods of building change detection using DSM have been studied. In order to detect building changes using DSM, we need to generate a DSM using a stereo satellite image. The change detection method using D-DSM (Differential DSM) uses the elevation difference between two DSMs of different dates. The D-DSM method has difficulty in applying a precise vertical threshold, because between the two DSMs may have elevation errors. In this study, we focus on the urban structure change detection using D-nDSM (Differential nDSM) based on nDSM (Normalized DSM) that expresses only the height of the structures or buildings without terrain elevation. In addition, we attempted to reduce noise using a morphological filtering. Also, in order to improve the roadside buildings extraction precision, we exploited the urban road network extraction from nDSM. Experiments were conducted for high-resolution stereo satellite images of two periods. The experimental results were compared for D-DSM, D-nDSM, and D-nDSM with road extraction methods. The D-DSM method showed the accuracy of about 30% to 55% depending on the vertical threshold and the D-nDSM approaches achieved 59% and 77.9% without and with the morphological filtering, respectively. Finally, the D-nDSM with the road extraction method showed 87.2% of change detection accuracy.

Application of Object Modeling and AR for Forest Field Investigation (산림 현장조사를 위한 객체 모델링과 AR의 활용)

  • Park, Joon-Kyu;Oh, Myoung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.411-416
    • /
    • 2020
  • Field investigations of forests are carried out by writing measured data by hand, and it is a hassle to reorganize the results after a field survey. In this study, a method using object modeling and augmented reality (AR) was applied in a test forest to increase the efficiency of a field investigations. Using a 3D laser scanner, data on were acquired 387 trees within an area of 1 ha at the study site. The coordinates, height, and diameter were calculated through object extraction and modeling of a tree. The proposed can reduce the time required to acquire data in the field and can be used as basic data for building related systems. In addition, the modeling results of trees and a survey using GNSS and AR techniques can be used check coordinates, labor, and attribute information, such as the chest height diameter of the trees being surveyed in the field. The shortcomings of the survey method could be improved. In the future, the method could greatly improve the efficiency of tree surveys and monitoring by reducing the manpower and time required for field surveys.

Utilizing Airborne LiDAR Data for Building Extraction and Superstructure Analysis for Modeling (항공 LiDAR 데이터를 이용한 건물추출과 상부구조물 특성분석 및 모델링)

  • Jung, Hyung-Sup;Lim, Sae-Bom;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.227-239
    • /
    • 2008
  • Processing LiDAR (Light Detection And Ranging) data obtained from ALS (Airborne Laser Scanning) systems mainly involves organization and segmentation of the data for 3D object modeling and mapping purposes. The ALS systems are viable and becoming more mature technology in various applications. ALS technology requires complex integration of optics, opto-mechanics and electronics in the multi-sensor components, Le. data captured from GPS, INS and laser scanner. In this study, digital image processing techniques mainly were implemented to gray level coded image of the LiDAR data for building extraction and superstructures segmentation. One of the advantages to use gray level image is easy to apply various existing digital image processing algorithms. Gridding and quantization of the raw LiDAR data into limited gray level might introduce smoothing effect and loss of the detail information. However, smoothed surface data that are more suitable for surface patch segmentation and modeling could be obtained by the quantization of the height values. The building boundaries were precisely extracted by the robust edge detection operator and regularized with shape constraints. As for segmentation of the roof structures, basically region growing based and gap filling segmentation methods were implemented. The results present that various image processing methods are applicable to extract buildings and to segment surface patches of the superstructures on the roofs. Finally, conceptual methodology for extracting characteristic information to reconstruct roof shapes was proposed. Statistical and geometric properties were utilized to segment and model superstructures. The simulation results show that segmentation of the roof surface patches and modeling were possible with the proposed method.

A Study for the Border line Extraction technique of City Spatial Building by LiDAR Data (LiDAR 데이터와 항공사진의 통합을 위한 사각 빌딩의 경계점 설정)

  • Yeon, Sang-Ho;Lee, Young-Wook
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.27-29
    • /
    • 2007
  • The visual implementation of 3-dimensional national environment is focused by the requirement and importance in the fields such as, national development plan, telecommunication facility deployment plan, railway construction, construction engineering, spatial city development, safety and disaster prevention engineering. The currently used DEM system using contour lines, which embodies national geographic information based on the 2-D digital maps and facility information has limitation in implementation in reproducing the 3-D spatial city. Moreover, this method often neglects the altitude of the rail way infrastructure which has narrow width and long length. There it is needed to apply laser measurement technique in the spatial target object to obtain accuracy. Currently, the LiDAR data which combines the laser measurement skill and GPS has been introduced to obtain high resolution accuracy in the altitude measurement. In this paper, we first investigate the LiDAR based researches in advanced foreign countries, then we propose data a generation scheme and an algorithm for the optimal manage and synthesis of railway facility system in our 3-D spatial terrain information. For this object, LiDAR based height data transformed to DEM, and the realtime unification of the vector via digital image mapping and raster via exactness evaluation is transformed to make it possible to trace the model of generated 3-dimensional railway model with long distance for 3D tract model generation.

  • PDF