• Title/Summary/Keyword: 3D Building

Search Result 1,916, Processing Time 0.029 seconds

EPAR V2.0: AUTOMATED MONITORING AND VISUALIZATION OF POTENTIAL AREAS FOR BUILDING RETROFIT USING THERMAL CAMERAS AND COMPUTATIONAL FLUID DYNAMICS (CFD) MODELS

  • Youngjib Ham;Mani Golparvar-Fard
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.279-286
    • /
    • 2013
  • This paper introduces a new method for identification of building energy performance problems. The presented method is based on automated analysis and visualization of deviations between actual and expected energy performance of the building using EPAR (Energy Performance Augmented Reality) models. For generating EPAR models, during building inspections, energy auditors collect a large number of digital and thermal imagery using a consumer-level single thermal camera that has a built-in digital lens. Based on a pipeline of image-based 3D reconstruction algorithms built on GPU and multi-core CPU architecture, 3D geometrical and thermal point cloud models of the building under inspection are automatically generated and integrated. Then, the resulting actual 3D spatio-thermal model and the expected energy performance model simulated using computational fluid dynamics (CFD) analysis are superimposed within an augmented reality environment. Based on the resulting EPAR models which jointly visualize the actual and expected energy performance of the building under inspection, two new algorithms are introduced for quick and reliable identification of potential performance problems: 1) 3D thermal mesh modeling using k-d trees and nearest neighbor searching to automate calculation of temperature deviations; and 2) automated visualization of performance deviations using a metaphor based on traffic light colors. The proposed EPAR v2.0 modeling method is validated on several interior locations of a residential building and an instructional facility. Our empirical observations show that the automated energy performance analysis using EPAR models enables performance deviations to be rapidly and accurately identified. The visualization of performance deviations in 3D enables auditors to easily identify potential building performance problems. Rather than manually analyzing thermal imagery, auditors can focus on other important tasks such as evaluating possible remedial alternatives.

  • PDF

Localization and 3D Polygon Map Building Method with Kinect Depth Sensor for Indoor Mobile Robots (키넥트 거리센서를 이용한 실내 이동로봇의 위치인식 및 3 차원 다각평면 지도 작성)

  • Gwon, Dae-Hyeon;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.745-752
    • /
    • 2016
  • We suggest an efficient Simultaneous Localization and 3D Polygon Map Building (SLAM) method with Kinect depth sensor for mobile robots in indoor environments. In this method, Kinect depth data is separated into row planes so that scan line segments are on each row plane. After grouping all scan line segments from all row planes into line groups, a set of 3D Scan polygons are fitted from each line group. A map matching algorithm then figures out pairs of scan polygons and existing map polygons in 3D, and localization is performed to record correct pose of the mobile robot. For 3D map-building, each 3D map polygon is created or updated by merging each matched 3D scan polygon, which considers scan and map edges efficiently. The validity of the proposed 3D SLAM algorithm is revealed via experiments.

Review of Reverse Design Process for Freeform Envelope Using 3D Scanning (비정형 건축물의 외장재 제작 시공을 위한 3D 스캐닝에 의한 역 설계 프로세스 검토)

  • Kim, Sung-Jin;Park, Sung-Jin;Ryu, Hanguk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.17-18
    • /
    • 2015
  • In manufacturing industry, image scanning technique has made enormous progress in past decades. 3D models have been also very important to continuously monitor the related spatial information for freeform buildings. The process of shape making of 3D scanning is as follows: mesh surface segmentation, NURBS surface generation, and parametric solid model generation. We will review the process and applying process. Especially in the construction industry, 3D data collection by laser scanning has become an high quality 3D models. Therefore, in this research, we have an effort to review construction of reverse design process for freeform envelope using 3D scanning. The technology enables many 3D shape engineering and design parameterization of reverse engineering in the construction site.

  • PDF

Reductions in the Cost and Risk of Interior Construction Using 3D CG Design (3차원 CG설계를 이용한 실내건축공사의 원가 및 리스크 절감)

  • Lee, Jun-Seob;Bang, Hong-Soon;Kim, Ok-Kyue
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.285-286
    • /
    • 2021
  • These days, interior construction is performed to prevent the deterioration of old building finishings or to make distinctive designs. In case of interior construction, a construction cost is estimated through basic 2D drawings in the design step. Accordingly, an efficient construction plan and direction is established according to budget. In such a case, construction is dependent on 2D drawings. At that time, a risk can occur easily. This study is aimed at reducing the cost and risk of interior construction by implementing 3D drawings with the use of the visual data of 2D drawings. For accurate analysis, 2D drawings were completed, and then 3D interior construction modeling for various buildings was conducted with the 3D modeling software 3D Max. According to the 3D modeling, it reduced the cost and risk more than 2D drawings based design, and influenced the improvement in the understanding of orderers and workers.

  • PDF

Extraction of 3D Building Information using Shadow Analysis from Single High Resolution Satellite Images (단일 고해상도 위성영상으로부터 그림자를 이용한 3차원 건물정보 추출)

  • Lee, Tae-Yoon;Lim, Young-Jae;Kim, Tae-Jung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.2 s.36
    • /
    • pp.3-13
    • /
    • 2006
  • Extraction of man-made objects from high resolution satellite images has been studied by many researchers. In order to reconstruct accurate 3D building structures most of previous approaches assumed 3D information obtained by stereo analysis. For this, they need the process of sensor modeling, etc. We argue that a single image itself contains many clues of 3D information. The algorithm we propose projects virtual shadow on the image. When the shadow matches against the actual shadow, the height of a building can be determined. If the height of a building is determined, the algorithm draws vertical lines of sides of the building onto the building in the image. Then the roof boundary moves along vertical lines and the footprint of the building is extracted. The algorithm proposed can use the shadow cast onto the ground surface and onto facades of another building. This study compared the building heights determined by the algorithm proposed and those calculated by stereo analysis. As the results of verification, root mean square errors of building heights were about 1.5m.

  • PDF

Freeform 3D Coordinate Control Technology using CNC Twisted Tube Method -Focused on The ARC in DaeGu- (CNC Twisted Tube공법을 이용한 비정형 3차원 좌표제어 기술 -대구 대표물문화관(디아크)를 중심으로-)

  • Kim, Sung-Jin;Ryu, Geun-seok;Ryu, Han-Guk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.227-228
    • /
    • 2012
  • In contemporary architectural practice, flat sections and plan drawings are no longer a primary means of representation and communication with participants. A typical building design has an ornamental exterior wall system and a roof system that should have water-proof quality and drainage function. By comparison, distinction between exterior wall and roof are unclear in freeform buildings, and they are integrated into a concept of a building envelope. This study is to propose 3D coordinate control technology for freeform structure by CNC curved tube method in order to develop a BIM-based envelope design and construction method for freeform building. Because a much wider freeform building construction can be achieved with correct 3D data and easy-to-implement in construction field, the proposed 3D coordinate control technology is highly recommended for practical use instead of the conventional CAD system.

  • PDF

Development of an Information Framework for Representing 3D Object-based Model of Complex Facilities as 2D Drawing - Focusing on the Building Service Objects - (복합시설물의 3D 객체기반 모델의 2D 표현을 위한 정보체계 개발 - 빌딩서비스 객체를 중심으로 -)

  • Kang, Byung-Chul;Choi, Sam-Rak;Kim, In-Han;Kim, Hak-Doo;Kim, Mi-Hui;Kwon, Jeong-Min
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.6
    • /
    • pp.412-421
    • /
    • 2006
  • Recently, the needs for sharing and exchanging drawing information between 2D and 3D data in complex facilities are well recognized throughout the construction industries. The purpose of this study is to propose an information framework to represent 3D IFC (Industry Foundation Classes) -based drawing of building services in complex facilities as 2D drawing. In this study, 1) attributes of building service objects which are used in 3D CAD system are analyzed and present drawing standards are analyzed, 2) based on the analysis, an information framework is developed to represent 3D model in 2D representation, and 3) further more, to test a compatibility of the information sharing framework, number of standardized APIs and an IFC2Dbrowser are developed during the study.

Engineering Construction With High-Precision Survey Equipment (3D laser scanner, 3D photo scanner, drone) (고정밀 측량장비(3D 레이저 스캐너, 3D 포토 스캐너, 드론)를 활용한 건축 시공단계의 엔지니어링 적용사례)

  • Krchung, Kwang-Ryang;Lee, Byoung-Do;Kim, Tae-Hyuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.133-134
    • /
    • 2019
  • As information and construction technology increases, the demand for sophisticated geometric design grows. Design of buildings is becoming more larger, higher, and complicated every day, requiring much new construction technology to bring the design into reality. Nonetheless, the speed of construction technology development is not as rapid. This study concerns the difficulties of realization of sophisticated geometric design. It aims to suggest using BIM and precision survey equipment during the construction stage of the project is a way to resolve. The study will list how to use BIM as an engineering platform incorporating a photo scanner, a scanner drone, and a 3D scanner in the construction stage of projects, how these progressive projects were able to benefit from the high-construction technology.

  • PDF

Quality Inspection Scheme for Rebar Work Using 3D Scanning Technology (3D 스캐닝을 활용한 철근공사 품질점검 방안)

  • Kim, Ju-Yong;Park, Ji-Yeong;Lee, Don-Soo;Lee, Young-Do;Kim, Gwang-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.214-215
    • /
    • 2020
  • The 3D scanning technology is being introduced for quality inspection of building construction. Therefore, this study tried to confirm whether it is possible to check the quality of rebar by using 3D scanning. After rebar placed on the formwork slab was scanned with a 3D scanner, the rebar spacing was confirmed by overlapping with the CAD drawing. As a result, the 3D scanner was able to check the quality of rebar work on one floor at a time. Therefore, 3D scanning could be used for quality inspection of rebar works such as columns, beam and girders, walls, and slabs in the future.

  • PDF

A Geographic Modeling System Using GIS and Real Images (GIS와 실영상을 이용한 지리 모델링 시스템)

  • 안현식
    • Spatial Information Research
    • /
    • v.12 no.2
    • /
    • pp.137-149
    • /
    • 2004
  • For 3D modelling artificial objects with computers, we have to draw frames and paint the facet images on each side. In this paper, a geographic modelling system building automatically 3D geographic spaces using GIS data and real images of buildings is proposed. First, the 3D model of terrain is constructed by using TIN and DEM algorithms. The images of buildings are acquired with a camera and its position is estimated using vertical lines of the image and the GIS data. The height of the building is computed with the image and the position of the camera, which used for making up the frames of buildings. The 3D model of the building is obtained by detecting the facet iamges of the building and texture mapping them on the 3D frame. The proposed geographical modeling system is applied to real area and shows its effectiveness.

  • PDF