• Title/Summary/Keyword: 3D 정합

Search Result 735, Processing Time 0.023 seconds

Three-Dimensional Image Registration using a Locally Weighted-3D Distance Map (지역적 가중치 거리맵을 이용한 3차원 영상 정합)

  • Lee, Ho;Hong, Helen;Shin, Yeong-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.7
    • /
    • pp.939-948
    • /
    • 2004
  • In this paper. we Propose a robust and fast image registration technique for motion correction in brain CT-CT angiography obtained from same patient to be taken at different time. First, the feature points of two images are respectively extracted by 3D edge detection technique, and they are converted to locally weighted 3D distance map in reference image. Second, we search the optimal location whore the cross-correlation of two edges is maximized while floating image is transformed rigidly to reference image. This optimal location is determined when the maximum value of cross-correlation does't change any more and iterates over constant number. Finally, two images are registered at optimal location by transforming floating image. In the experiment, we evaluate an accuracy and robustness using artificial image and give a visual inspection using clinical brain CT-CT angiography dataset. Our proposed method shows that two images can be registered at optimal location without converging at local maximum location robustly and rapidly by using locally weighted 3D distance map, even though we use a few number of feature points in those images.

Building Detection Using Edge and Color Information of Color Imagery (컬러영상의 경계정보와 색상정보를 활용한 동일건물인식)

  • Park, Choung Hwan;Sohn, Hong Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.519-525
    • /
    • 2006
  • The traditional area-based matching or efficient matching methods using epipolar geometry and height restriction of stereo images, which have a confined search space for image matching, have still some disadvantages such as mismatching and timeconsuming, especially in the dense metropolitan city that very high and similar buildings exist. To solve these problems, a new image matching method through building recognition has been presented. This paper described building recognition in color stereo images using edge and color information as a elementary study of new matching scheme. We introduce the modified Hausdorff distance for using edge information, and the modified color indexing with 3-D RGB histogram for using color information. Color information or edge information alone is not enough to find conjugate building pairs. For edge information only, building recognition rate shows 46.5%, for color information only, 7.1%. However, building recognition rate distinctly increase 78.5% when both information are combined.

3-D Building Reconstruction from Standard IKONOS Stereo Products in Dense Urban Areas (IKONOS 컬러 입체영상을 이용한 대규모 도심지역의 3차원 건물복원)

  • Lee, Suk Kun;Park, Chung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.535-540
    • /
    • 2006
  • This paper presented an effective strategy to extract the buildings and to reconstruct 3-D buildings using high-resolution multispectral stereo satellite images. Proposed scheme contained three major steps: building enhancement and segmentation using both BDT (Background Discriminant Transformation) and ISODATA algorithm, conjugate building identification using the object matching with Hausdorff distance and color indexing, and 3-D building reconstruction using photogrammetric techniques. IKONOS multispectral stereo images were used to evaluate the scheme. As a result, the BDT technique was verified as an effective tool for enhancing building areas since BDT suppressed the dominance of background to enhance the building as a non-background. In building recognition, color information itself was not enough to identify the conjugate building pairs since most buildings are composed of similar materials such as concrete. When both Hausdorff distance for edge information and color indexing for color information were combined, most segmented buildings in the stereo images were correctly identified. Finally, 3-D building models were successfully generated using the space intersection by the forward RFM (Rational Function Model).

The 3-D Object Recognition Using the Shape from Stereo Algorithm (스테레오 기법의 형태정보를 이용한 3차원 물체 인식)

  • 박성만;곽윤식;이대영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8B
    • /
    • pp.1500-1505
    • /
    • 1999
  • In this paper, we presented the stereo algorithm for 3-D object recognition. In order to solve the problem for matching time in existed methods, we proposed the method which used the moving direction vector. On the other hand, after we extracted the moving vectors by moving direction of objects, rotated object was matched on axis of it. Using the Hough transform, we obtained the 2-D synthesed image as reference images corresponding to the rate of moving, and then compared with the unknown input images.

  • PDF

SIFT Weighting Based Iterative Closest Points Method in 3D Object Reconstruction (3차원 객체 복원을 위한 SIFT 특징점 가중치 기반 반복적 점군 정합 방법)

  • Shin, Dong-Won;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.309-312
    • /
    • 2016
  • 최근 실세계에 존재하는 물체의 3차원 형상과 색상을 디지털화하는 3차원 객체 복원에 대한 관심이 날로 증가하고 있다. 3차원 객체 복원은 영상 획득, 영상 보정, 점군 획득, 반복적 점군 정합, 무리 조정, 3차원 모델 표현과 같은 단계를 거처 통합된 3차원 모델을 생성한다. 그 중 반복적 점군 정합 방법은 카메라 궤적의 초기 값을 획득하는 방법으로서 무리 조정 단계에서 전역 최적 값으로의 수렴을 보장하기 위해 중요한 단계이다. 기존의 반복적 점군 정합 (iterative closest points) 방법에서는 시간이 지남에 따라 누적된 궤적 오차 때문에 발생하는 객체 표류 문제가 발생한다. 본 논문에서는 이 문제를 해결하기 위해 색상 영상에서 SIFT 특징점을 획득하고 3차원 점군을 얻은 뒤 가중치를 부여함으로써 점 군 간의 더 정확한 정합을 수행한다. 실험결과에서 기존의 방법과 비교하여 제안하는 방법이 절대 궤적 오차 (absolute trajectory error)가 감소하는 것을 확인 했고 복원된 3차원 모델에서 객체 표류 현상이 줄어드는 것을 확인했다.

  • PDF

Improvement of Withdraw릴 Weighted SAW Transversal Filter Performance through Impedance Matching (임피던스 정합을 통한 횡단형 Withdrawal SAW 필터의 성능개선)

  • Lee Youngjin;Lee Seunghee;Roh Yongrae
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.389-392
    • /
    • 2000
  • 본 연구에서는 1, 2단자쌍 회로망의 임피던스 정합회로를 간단하고 빠르게 구할 수 있는 방안을 개발하였다. 우선 회로망의 전체 전달함수를 F 행열로 부터 계산하고, 이를 이용하여 양단의 부하저항 및 정합회로가 포함된 각각의 단자의 입출력 임피던스를 구하였으며, 이 식으로부터 정합용 소자의 정확한 값을 계산하였다. 본 연구의 타당성을 검증하기 위해 CDMA용 소자로 널리 사용되는 중간주파수 대역 withdrawal 가중형 SAW 필터에 본 연구의 결과를 적용하여 임피던스 정합 전후의 특성변화를 시뮬레이션과 실험을 통하여 동시에 확인하였다 그 결과 85.38 MHz의 중심주파수에서 비대역폭이 $1.2\%$, 삽입손실이 29dB, VSWR이 80인 필터를 본 연구방법을 이용하여 정합 한 경우, 각각 $1.8\%$, 9dB, 3으로 향상됨을 시뮬레이션과 실험을 통해 확인하였다. 본 연구결과는 SAW 디바이스의 정합에 매우 용이하게 이용될 수 있을 뿐만 아니라 일반적인 1, 2단자쌍 회로망의 임피던스 정합에도 널리 사용될 수 있다

  • PDF

Resampling Method to Improve Performance of Point Cloud Registration (포인트 클라우드 정합 성능 향상을 위한 리샘플링 방법)

  • Kim, Jongwook;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.187-189
    • /
    • 2020
  • 본 논문에서는 포인트 클라우드 정합 성능 향상을 위해 기하적 복잡도가 낮은 정점들의 영향을 최소화하는 포인트 클라우드 리샘플링 방법을 제안한다. 3 차원 특징 기술자(3D feature descriptor)를 기반으로 하는 포인트 클라우드 정합은 정점 법선 벡터의 변화량을 특징으로 사용한다. 따라서 강건한 특징은 대부분 정점 법선 벡터의 변화량이 큰 영역에서 추출된다. 반면에 정점 법선 벡터의 변화량이 거의 없는 평면 영역은 정합 수행 시에 이상점(outlier)으로 작용할 수 있으므로 해당 정점들이 정합 과정에 미치는 영향을 최소화해야 한다. 제안하는 방법은 모델 포인트 클라우드의 기하적 복잡도를 고려한 리샘플링을 통해 전체 정점의 수 대비 복잡도가 낮은 정점들의 비율을 낮추어 이상점이 정합 과정에 미치는 영향을 최소화하고 정합 성능을 향상시켰다.

  • PDF

Recognizing 3D Object's Attribute with Template Matching from RGB-D Images (RGB-D 영상으로부터 형판 정합을 이용한 3차원 물체의 속성 인식)

  • Kim, Dong-Ha;Kim, Joo-Hee;Im, Tae-Kwon;Kim, In-Cheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.766-769
    • /
    • 2015
  • 본 논문에서는 컬러 영상과 깊이 영상으로부터 영상 전체의 정보를 활용하는 형판 정합 방법으로 특징을 추출하여, 사물의 속성을 인식하는 시스템을 제안한다. 본 시스템은 입력 영상으로부터 더 많은 정보를 얻기 위해 컬러 영상과 깊이 영상을 함께 사용하였다. 그리고 영상의 부분적인 정보가 아닌 전체 정보를 활용하는 형판 정합 방법을 사용하여 속성 인식률을 향상 시켰다. 본 시스템의 성능을 확인하기 위해 워싱턴 대학에서 제공하는 RGB-D 데이터 집합을 이용하여 다른 특징들 및 분류기와 비교실험을 진행하였고, 본 논문에서 제안하는 시스템의 높은 성능을 확인할 수 있었다.

Filtering Feature Mismatches using Multiple Descriptors (다중 기술자를 이용한 잘못된 특징점 정합 제거)

  • Kim, Jae-Young;Jun, Heesung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • Feature matching using image descriptors is robust method used recently. However, mismatches occur in 3D transformed images, illumination-changed images and repetitive-pattern images. In this paper, we observe that there are a lot of mismatches in the images which have repetitive patterns. We analyze it and propose a method to eliminate these mismatches. MDMF(Multiple Descriptors-based Mismatch Filtering) eliminates mismatches by using descriptors of nearest several features of one specific feature point. In experiments, for geometrical transformation like scale, rotation, affine, we compare the match ratio among SIFT, ASIFT and MDMF, and we show that MDMF can eliminate mismatches successfully.

An Automatic Matching between Video Frames and 3D Facial Model (동영상과 3차원 얼굴 모델이 자동 정합)

  • Lee, Jung;Kim, Chang-Hun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.613-615
    • /
    • 2001
  • 본 논문은 동영상 내의 얼굴을 특정인 얼굴로 자동 변환 및 정합하는 기술을 제안한다. 얼굴에 나타난 동작이나 표정은 높은 자유도로 인하여 기존에 사용되어온 2차원적이고 고정된 물체 위주의 동영상 정합 기술로는 자연스러운 결과물을 얻기가 어렵다. 본 논문에서는 입력 받은 정면 유사방향의 사진으로부터 3차원 얼굴 모델을 복원한다. 각 프레임에 등장한 얼굴의 3차원 방향을 추출하여 복원한 3차원 얼굴 모델에 적용한 후 대체할 얼굴 영역에 저합시킨다. 정합 과정 시 비디오 프레임 내의 조명효과와 얼굴색 등을 분석하고 3차원 얼굴 모델에 블렌딩하여 비디오 프레임과 자연스럽게 정합할 수 있도록 한다.

  • PDF