• Title/Summary/Keyword: 3D 입체영상

Search Result 617, Processing Time 0.024 seconds

Pose Transformation of a Frontal Face Image by Invertible Meshwarp Algorithm (역전가능 메쉬워프 알고리즘에 의한 정면 얼굴 영상의 포즈 변형)

  • 오승택;전병환
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.1_2
    • /
    • pp.153-163
    • /
    • 2003
  • In this paper, we propose a new technique of image based rendering(IBR) for the pose transformation of a face by using only a frontal face image and its mesh without a three-dimensional model. To substitute the 3D geometric model, first, we make up a standard mesh set of a certain person for several face sides ; front. left, right, half-left and half-right sides. For the given person, we compose only the frontal mesh of the frontal face image to be transformed. The other mesh is automatically generated based on the standard mesh set. And then, the frontal face image is geometrically transformed to give different view by using Invertible Meshwarp Algorithm, which is improved to tolerate the overlap or inversion of neighbor vertexes in the mesh. The same warping algorithm is used to generate the opening or closing effect of both eyes and a mouth. To evaluate the transformation performance, we capture dynamic images from 10 persons rotating their heads horizontally. And we measure the location error of 14 main features between the corresponding original and transformed facial images. That is, the average difference is calculated between the distances from the center of both eyes to each feature point for the corresponding original and transformed images. As a result, the average error in feature location is about 7.0% of the distance from the center of both eyes to the center of a mouth.

Potential Use of 3D Course Material as a Pedagogical Tool for Laboratory Courses with respect to Assembly/Disassembly of the Combustion Chamber in Vocational High Schools (항공고등학교 실습교육에서 연소실 분해 조립을 중심으로 고찰한 3D 학습 자료의 활용 방안)

  • Lee, Tae-gyoon;Kim, Jong-Seong
    • Journal of Internet Computing and Services
    • /
    • v.17 no.3
    • /
    • pp.33-43
    • /
    • 2016
  • In this study, 3D-image based course material has been suggested as a potential pedagogical tool for laboratory courses for aviational maintenance in vocational high schools. With a special focus on assembly/disassembly of the combustion chamber, 3D contents described here are created by Soildworks 2014 based on the textbook widely used in aviational high schools. By analyzing several textbooks currently adopted at various schools, we have clearly shown that the current text-based teaching method is far from being effective regarding providing adequate learning environment for high school students who study aviational maintenance. From the analysis of the conventional textbooks, it is seen that it is urgent that we should come up with more effective and efficient way of teaching methods for these topics at vocational high schools. Using Solidworks, we have developed very vivid 3D image-based course material for topics related to a combustion chamber in the airplane. Newly developed 3D material is seen to clearly show step by step procedures of assembly and disassembly of the combustion chamber which has crucial importance in the aviational laboratory courses. Especially the transparent feature in Solidworks could make it possible to observe the parts covered by outer casing, which can not be seen even in any laboratory class with real objects. 3D animated views could provided unprecedented learning environment for students to acquire core knowledge with ease for the maintenance of a combustion chamber. In order to provide easy access for students to this 3D-based course material, the exclusive viewer is also developed using MS office powerpoint 2007. An example of a learning plan using 3d course material is suggested as well.

3D Visual Attention Model and its Application to No-reference Stereoscopic Video Quality Assessment (3차원 시각 주의 모델과 이를 이용한 무참조 스테레오스코픽 비디오 화질 측정 방법)

  • Kim, Donghyun;Sohn, Kwanghoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.110-122
    • /
    • 2014
  • As multimedia technologies develop, three-dimensional (3D) technologies are attracting increasing attention from researchers. In particular, video quality assessment (VQA) has become a critical issue in stereoscopic image/video processing applications. Furthermore, a human visual system (HVS) could play an important role in the measurement of stereoscopic video quality, yet existing VQA methods have done little to develop a HVS for stereoscopic video. We seek to amend this by proposing a 3D visual attention (3DVA) model which simulates the HVS for stereoscopic video by combining multiple perceptual stimuli such as depth, motion, color, intensity, and orientation contrast. We utilize this 3DVA model for pooling on significant regions of very poor video quality, and we propose no-reference (NR) stereoscopic VQA (SVQA) method. We validated the proposed SVQA method using subjective test scores from our results and those reported by others. Our approach yields high correlation with the measured mean opinion score (MOS) as well as consistent performance in asymmetric coding conditions. Additionally, the 3DVA model is used to extract information for the region-of-interest (ROI). Subjective evaluations of the extracted ROI indicate that the 3DVA-based ROI extraction outperforms the other compared extraction methods using spatial or/and temporal terms.

Development of Quality Assurance Software for $PRESAGE^{REU}$ Gel Dosimetry ($PRESAGE^{REU}$ 겔 선량계의 분석 및 정도 관리 도구 개발)

  • Cho, Woong;Lee, Jaegi;Kim, Hyun Suk;Wu, Hong-Gyun
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.233-241
    • /
    • 2014
  • The aim of this study is to develop a new software tool for 3D dose verification using $PRESAGE^{REU}$ Gel dosimeter. The tool included following functions: importing 3D doses from treatment planning systems (TPS), importing 3D optical density (OD), converting ODs to doses, 3D registration between two volumetric data by translational and rotational transformations, and evaluation with 3D gamma index. To acquire correlation between ODs and doses, CT images of a $PRESAGE^{REU}$ Gel with cylindrical shape was acquired, and a volumetric modulated arc therapy (VMAT) plan was designed to give radiation doses from 1 Gy to 6 Gy to six disk-shaped virtual targets along z-axis. After the VMAT plan was delivered to the targets, 3D OD data were reconstructed from 512 projection data from $Vista^{TM}$ optical CT scanner (Modus Medical Devices Inc, Canada) per every 2 hours after irradiation. A curve for converting ODs to doses was derived by comparing TPS dose profile to OD profile along z-axis, and the 3D OD data were converted to the absorbed doses using the curve. Supra-linearity was observed between doses and ODs, and the ODs were decayed about 60% per 24 hours depending on their magnitudes. Measured doses from the $PRESAGE^{REU}$ Gel were well agreed with the TPS doses at central region, but large under-doses were observed at peripheral region at the cylindrical geometry. Gamma passing rate for 3D doses was 70.36% under the gamma criteria of 3% of dose difference and 3 mm of distance to agreement. The low passing rate was resulted from the mismatching of the refractive index between the PRESAGE gel and oil bath in the optical CT scanner. In conclusion, the developed software was useful for 3D dose verification from PRESAGE gel dosimetry, but further improvement of the Gel dosimetry system were required.

Site-Suitability Analysis Using Spatial Information Analysis (공간정보 분석기법을 이용한 적지분석)

  • Han, Seung-Hee;Kim, Sung-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5207-5215
    • /
    • 2010
  • Selecting proper location for complex facility with special purpose need comprehensive consideration on the condition and surrounding environment. Especially, in case of living space for human, lighting, ventilation, efficiency in land use, etc. are important elements. Diverse 3D analysis through 3D topography modeling and virtual simulation is necessary for this. Now, it can be processed with relatively inexpensive cost since high resolution satellite image essential in topography modeling is provided with domestic technology through Arirang No. 2 satellite (KOMPSAT2). In this study, several candidate sites is selected for complex planning with special purpose and analysis on proper location was performed using the 3D topography modeling and land information. For this, land analysis, land price calculation, slope analysis and aspect analysis have been carried out. As a result of arranging the evaluation index for each candidate site and attempting the quantitative evaluation, proper location could be selected efficiently and reasonably.

Development of the Visualization Prototype of Radar Rainfall Data Using the Unity 3D Engine (Unity 3D 엔진을 활용한 강우레이더 자료 시각화 프로토타입 개발)

  • CHOI, Hyeoung-Wook;KANG, Soo-Myung;KIM, Kyung-Jun;KIM, Dong-Young;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.131-144
    • /
    • 2015
  • This research proposes a prototype for visualizing radar rainfall data using the unity 3D engine. The mashup of radar data with topographic information is necessary for the 3D visualization of the radar data with high quality. However, the mashup of a huge amount of radar data and topographic data causes the overload of data processing and low quality of the visualization results. This research utilized the Unitiy 3D engine, a widely used engine in the game industry, for visualizing the 3D topographic data such as the satellite imagery/the DEM(Digital Elevation Model) and radar rainfall data. The satellite image segmentation technique and the image texture layer mashup technique are employed to construct the 3D visualization system prototype based on the topographic information. The developed protype will be applied to the disaster-prevention works by providing the radar rainfall data with the 3D visualization based on the topographic information.

The Design and Implementation of Biotope Map Using 3D GIS (3차원 GIS를 이용한 생태지도의 설계 및 구현)

  • Yang, Su-Yeong;Jung, In-Sung;Song, Gil-Jong;Yoo, Nam-Hyun;Kim, Won-Jung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06b
    • /
    • pp.289-293
    • /
    • 2010
  • 21C 현대 문명사회에서는 도시의 고밀도 및 팽창으로 인하여 도시 내 생태계가 파괴되면서 생물서식처의 환경 악화 및 엄청난 감소가 초래되었으며, 그 결과로 인하여 인간과 생물이 접촉할 수 있는 공간이 현저하게 줄어들고 있다. 또한 도시 영역의 확장을 위하여 산림 및 녹지의 감소, 녹지의 분절 및 단절화, 해안 매립 등이 계획 없이 무분별하게 진행됨으로써, 각종 동식물의 개체 수 감소 및 토양의 건조화 등이 발생하고 있으며, 그 영향으로 생물종의 다양성이 떨어지고, 도시 생태계의 교란이 심해지고 있다. 이러한 도시 생태계의 교란은 도시에 거주하고 있는 시민들의 생활의 질이 떨어지게 하고 많은 환경 문제들의 주원인이 되고 있다. 지속적이면서도 자연친화적인 도시발전을 위해서는 도시 내 자연생태계를 회복하고 생물서식공간을 종합적으로 보전하면서 복원해야 한다는 요구가 높아지고 있지만, 이를 체계적으로 이루기 위한 방법론의 부재에 시달리고 있었다. 이러한 가운데 유럽을 중심으로 생겨난 비오톱(Biotope)과 비오톱 지도화 방법이 생태계를 보전하며, 시민들에게 다양한 자연체험과 휴양 기회를 제공하고 친환경적인 도시계획을 위한 핵심적인 역할을 하는 것으로 인식되고 있다. 하지만, 기존의 비오톱 지도는 이미지 기반의 2차원 지도로 제공되고 있어, 거리 및 공간 분석에 취약하고 정보전달력이 부족하여, 익숙한 전문가가 아닌 경우 비오톱을 이해하는데 상당한 정도의 시간이 필요하였다. 이에 본 논문에서는 공간정보가 결여된 2차원 형태의 GIS 데이터를 기반으로 3차원 공간 데이터를 자동으로 생성하고, 위성영상과 DEM(Digital Elevation Model)을 이용하여 3차원 지형을 만들어 각 주제도별로 입체적인 분석이 가능하도록 하였다. 또한 동영상 녹화 기능과 3차원 객체 추가 기능을 이용하여, 자연생태계를 고려한 도시의 설계를 진행하는 경우 3차원적인 모델링을 제공함으로써 효과적이면서도 사용자의 이해도를 향상 시킬 수 있는 정보 전달력을 가질 수 있도록 설계 및 구현하였다.

  • PDF

Study on Smart Cooling Technology by Acoustic Streaming Generated by Ultrasonic Vibration Using 3D PIV (3차원 PIV를 활용한 초음파 진동에 의해 발생된 음향 유동을 이용한 스마트 냉각법 연구)

  • Lee, Dong-Ryul;Loh, Byoung-Gook;Kwon, Ki-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1078-1088
    • /
    • 2010
  • In order to analyze the quantitative characteristics of acoustic streaming, experimental setup of 3-D stereoscopic PIV(particle imaging velocimetry) was designed and quantitative ultrasonic flow fields in the gap between the ultrasonic vibrator and heat source were measured. Utilizing acoustic streaming induced by ultrasonic vibration, surface temperature drop of cooling object was also measured. The study on smart cooling method by acoustic streaming induced by ultrasonic vibration was performed due to the empirical relations of flow pattern, average flow velocity, different gaps, and enhancement on cooling rates in the gap. Average velocity fields and maximum acoustic streaming velocity in the open gap between the stationary cylindrical heat source and ultrasonic vibrator were experimentally measured at no vibration, resonance, and non-resonance. It was clearly observed that the enhancement of cooling rates existed owing to the acoustic air flow in the gap at resonance and non-resonance induced by ultrasonic vibration. The ultrasonic wave propagating into air in the gap creates steady-state secondary eddy called acoustic streaming which enhances heat transfer from the heat source to encompassing air. The intensity of the acoustic streaming induced by ultrasonic vibration experimentally depended upon the gap between the heat source and ultrasonic vibrator. The ultrasonic vibration at resonance caused the increase of the acoustic streaming velocity and convective heat transfer augmentation when the flow fields by 3D stereoscopic PIV and temperature drop of the heat source were measured experimentally. The acoustic streaming velocity of air enhancement on cooling rates in the gap is maximal when the gap agrees with the multiples of half wavelength of the ultrasonic wave, which is specifically 12 mm.

Subjective Listening Test based on Frontal Loudspeaker Array Reproduction System (전방 스피커 어레이 재생 방식 기반 음향 재현 성능 평가)

  • Yoo, Jae-hyoun;Jang, Daeyoung;Lee, Taejin
    • Journal of Broadcast Engineering
    • /
    • v.20 no.5
    • /
    • pp.667-675
    • /
    • 2015
  • As the interest on the high-definition and high-quality broadcasting is increased, the request on the high quality sound signal is enlarged as well as on the video signal's quality. One factor contributing to the high-quality of audio signal is an expansion of reproduction channels like 10.2channel and 22.2channel, but there is a problem of speaker installation issue of these many channels. One solution to solve this problem, we can use frontal loudspeaker array reproduction technique making virtual surround sound. So in this paper, we introduce theocratical analysis on the Wave Field Synthesis used for speaker array based sound reproduction and also present the result about the subjective listening test of reproduction performance based on this technique to check the perfoemance of this system. As a result, we showed WFS based frontal loudspeaker array reproduction method could provide sufficient performance compared to conventional discrete 5.1 channel reproduction method.

Design of MPEG-2 Transport Stream specification for stereoscopic video broadcasting service (스테레오스코픽 비디오 방송 서비스를 위한 MPEG-2 전송스트림 구성 방안)

  • Park, Heung-Sik;Kim, Kyu-Heon;Lee, Gun-Hee;Yun, Kug-Jin;Suh, Doug-Young;Park, Gwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.14 no.6
    • /
    • pp.769-782
    • /
    • 2009
  • Stereoscopic video service is one of the most widely adopted technologies for 3-Dimensional technology. However, the stereoscopic video service has not been penetrated into the market since there does not exist a proper transmission method even though the conventional MPEG-2 Transport Stream (TS) has support for broadcast service of mono-scopic video contents. This is partly because the MPEG-2 TS does not support displaying a stereoscopic video content which consists of several composition types widely used in the market. This paper proposes the new MPEG-2 TS specification suitable for transmitting and displaying stereoscopic video contents. In order to show feasibility of the proposal, this paper describes an end-to-end system which is implemented with consideration of the method how to multiplex and de-multiplex stereoscopic video contents as well as keeping backward compatibility with the traditional MPEG-2 TS.