• Title/Summary/Keyword: 3D 생성 AI

Search Result 41, Processing Time 0.037 seconds

Generative AI Technology Trends and Development Prospects for Digital Asset Creation (디지털 에셋 창작을 위한 생성형 AI 기술 동향 및 발전 전망)

  • K.S. Lee;S.W. Lee;M.S. Yoon;J.J. Yu;A.R. Oh;I.M. Choi;D.W. Kim
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.2
    • /
    • pp.33-42
    • /
    • 2024
  • With the recent rapid development of artificial intelligence (AI) technology, its use is gradually expanding to include creative areas and building new content using generative AI solutions, reaching beyond existing data analysis and reasoning applications. Content creation using generative AI faces challenges owing to technical limitations and other aspects such as copyright compliance. Nevertheless, generative AI may increase the productivity of experts and overcome barriers to creative work by allowing users to easily express their ideas as digital content. Thus, various types of applications will continue to emerge. As images and videos can be created using text input on a prompt, generative AI allows to create and edit digital assets quickly. We present trends in generative AI technology for images, videos, three-dimensional (3D) assets and scenes, digital humans, interactive content, and interfaces. In addition, the prospects for future technological development in this field are discussed.

Pose estimation-based 3D model motion control using low-performance devices (저성능 디바이스를 이용한 자세추정 기반 3D 모델 움직임 제어)

  • Jae-Hoon Jang;Yoo-Joo Choi
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.763-765
    • /
    • 2023
  • 본 논문에서는 저성능 컴퓨터나 스마트폰의 카메라를 통해 입력받은 영상을 기반으로 사용자의 포즈를 추정하고, 실시간으로 사용자의 포즈에 따라 3D 모델의 모션이 제어되어 가시화 될 수 있는 클라이어트-서버 구조의 "자세추정 및 3D 모델 모션 제어 시스템"을 제안한다. 제안 시스템은 소켓통신 기반의 클라이언트-서버구조로 구성되어, 서버에서는 실시간 자세 추정을 위한 딥러닝 모델이 수행되고, 저성능 클라이언트에서는 실시간으로 카메라 영상을 획득하여 영상을 서버에 전송하고, 서버로부터 자세 추정 정보를 받아 이를 3D 모델에 반영하고 렌더링 함으로써 사용자와 함께 3D 모델이 같은 동작을 수행하는 증강현실 화면을 생성한다. 고성능을 요구하는 객체 자세 추정 모듈은 서버에서 실행하고, 클라이언트에서는 영상 획득 및 렌더링만을 실행하기 때문에, 모바일 앱에서의 실시간 증강현실을 위한 자세 추정 및 3D 모델 모션 제어가 가능하다. 제안 시스템은 "증강현실 기반 영상 찍기 앱" 에 반영되어 사용자의 움직임을 따라하는 3D 캐릭터들의 영상을 쉽게 생성할 수 있도록 할 수 있다.

3D Object State Representation via State Diagram based on Informal Natural Language Requirement Specifications (비정형 자연어 요구 사항 기반 상태 모델을 통한 3D 객체의 상태 표현 메커니즘)

  • Ye Jin Jin;Chae Yun Seo;R. Young Chul Kim
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.494-496
    • /
    • 2024
  • 현재 소프트웨어 산업에서 자연어 요구사항의 정확한 분석 연구는 활발히 진행되고 있다. 그러나, 문법적인 분석만을 통해 해석하는 것이 일반적이다. 본 연구는 요구공학과 언어학 그리고 카툰 공학을 접목을 제안한다. 이를 위해서, 1) 언어학적 관점에는 촘스키의 구문 구조 분석 이론과 필모어의 의미역 이론을 결합하여 문법적, 의미적 분석을 수행한다. 2) 요구공학 관점에서는 요구사항 분석으로 상태 모델 속성 추출 및 접목한다. 3) 카툰 공학에서는 3D 이미지 생성한다. 또한, 해결 못했던 동사와 형용사에 대해 분석하여 범위를 확장한다. 즉 언어학적 분석을 바탕으로 UML 상태 다이어그램을 추출하고, 이를 3D 상태 이미지 생성한다. 본 연구는 AI 기술(Text to Image)에 소프트웨어 공학적 방법에서의 절차적인 공정과 재사용 적용함으로써, AI 내부 작동 원리에 대해 체계적으로 연구하고자 한다.

Generative AI-based Exterior Building Design Visualization Approach in the Early Design Stage - Leveraging Architects' Style-trained Models - (생성형 AI 기반 초기설계단계 외관디자인 시각화 접근방안 - 건축가 스타일 추가학습 모델 활용을 바탕으로 -)

  • Yoo, Youngjin;Lee, Jin-Kook
    • Journal of KIBIM
    • /
    • v.14 no.2
    • /
    • pp.13-24
    • /
    • 2024
  • This research suggests a novel visualization approach utilizing Generative AI to render photorealistic architectural alternatives images in the early design phase. Photorealistic rendering intuitively describes alternatives and facilitates clear communication between stakeholders. Nevertheless, the conventional rendering process, utilizing 3D modelling and rendering engines, demands sophisticate model and processing time. In this context, the paper suggests a rendering approach employing the text-to-image method aimed at generating a broader range of intuitive and relevant reference images. Additionally, it employs an Text-to-Image method focused on producing a diverse array of alternatives reflecting architects' styles when visualizing the exteriors of residential buildings from the mass model images. To achieve this, fine-tuning for architects' styles was conducted using the Low-Rank Adaptation (LoRA) method. This approach, supported by fine-tuned models, allows not only single style-applied alternatives, but also the fusion of two or more styles to generate new alternatives. Using the proposed approach, we generated more than 15,000 meaningful images, with each image taking only about 5 seconds to produce. This demonstrates that the Generative AI-based visualization approach significantly reduces the labour and time required in conventional visualization processes, holding significant potential for transforming abstract ideas into tangible images, even in the early stages of design.

A technique for predicting the cutting points of fish for the target weight using AI machine vision

  • Jang, Yong-hun;Lee, Myung-sub
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.4
    • /
    • pp.27-36
    • /
    • 2022
  • In this paper, to improve the conditions of the fish processing site, we propose a method to predict the cutting point of fish according to the target weight using AI machine vision. The proposed method performs image-based preprocessing by first photographing the top and front views of the input fish. Then, RANSAC(RANdom SAmple Consensus) is used to extract the fish contour line, and then 3D external information of the fish is obtained using 3D modeling. Next, machine learning is performed on the extracted three-dimensional feature information and measured weight information to generate a neural network model. Subsequently, the fish is cut at the cutting point predicted by the proposed technique, and then the weight of the cut piece is measured. We compared the measured weight with the target weight and evaluated the performance using evaluation methods such as MAE(Mean Absolute Error) and MRE(Mean Relative Error). The obtained results indicate that an average error rate of less than 3% was achieved in comparison to the target weight. The proposed technique is expected to contribute greatly to the development of the fishery industry in the future by being linked to the automation system.

The Design of Digital Human Content Creation System (디지털 휴먼 컨텐츠 생성 시스템의 설계)

  • Lee, Sang-Yoon;Lee, Dae-Sik;You, Young-Mo;Lee, Kye-Hun;You, Hyeon-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.4
    • /
    • pp.271-282
    • /
    • 2022
  • In this paper, we propose a digital human content creation system. The digital human content creation system works with 3D AI modeling through whole-body scanning, and is produced with 3D modeling post-processing, texturing, rigging. By combining this with virtual reality(VR) content information, natural motion of the virtual model can be achieved in virtual reality, and digital human content can be efficiently created in one system. Therefore, there is an effect of enabling the creation of virtual reality-based digital human content that minimizes resources. In addition, it is intended to provide an automated pre-processing process that does not require a pre-processing process for 3D modeling and texturing by humans, and to provide a technology for efficiently managing various digital human contents. In particular, since the pre-processing process such as 3D modeling and texturing to construct a virtual model are automatically performed by artificial intelligence, so it has the advantage that rapid and efficient virtual model configuration can be achieved. In addition, it has the advantage of being able to easily organize and manage digital human contents through signature motion.

Non-pneumatic Tire Design System based on Generative Adversarial Networks (적대적 생성 신경망 기반 비공기압 타이어 디자인 시스템)

  • JuYong Seong;Hyunjun Lee;Sungchul Lee
    • Journal of Platform Technology
    • /
    • v.11 no.6
    • /
    • pp.34-46
    • /
    • 2023
  • The design of non-pneumatic tires, which are created by filling the space between the wheel and the tread with elastomeric compounds or polygonal spokes, has become an important research topic in the automotive and aerospace industries. In this study, a system was designed for the design of non-pneumatic tires through the implementation of a generative adversarial network. We specifically examined factors that could impact the design, including the type of non-pneumatic tire, its intended usage environment, manufacturing techniques, distinctions from pneumatic tires, and how spoke design affects load distribution. Using OpenCV, various shapes and spoke configurations were generated as images, and a GAN model was trained on the projected GANs to generate shapes and spokes for non-pneumatic tire designs. The designed non-pneumatic tires were labeled as available or not, and a Vision Transformer image classification AI model was trained on these labels for classification purposes. Evaluation of the classification model show convergence to a near-zero loss and a 99% accuracy rate confirming the generation of non-pneumatic tire designs.

  • PDF

Rib Segmentation via Biaxial Slicing and 3D Reconstruction (다중 축 슬라이싱 및 3 차원 재구성을 통한 갈비뼈 세그멘테이션)

  • Hyunsung Kim;Gyurin Byun;Seonghyeon Ko;Junghyun Bum;Duc-Tai Le;Hyunseung Choo
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.611-614
    • /
    • 2023
  • 갈비뼈 병변 진단 과정은 방사선 전문의가 CT 스캐너를 통해 생성된 2 차원 CT 이미지들을 해석하며 진행된다. 병변의 위치를 파악하고 정확한 진단을 내리기 위해 수백장의 2차원 CT 이미지들이 세밀하게 검토되며 갈비뼈를 분류한다. 본 연구는 이런 노동 집약적 작업의 문제점을 개선시키기 위해 Biaxial Rib Segmentation(BARS)을 제안한다. BARS 는 흉부 CT 볼륨의 관상면과 수평면으로 구성된 2 차원 이미지들을 U-Net 모델에 학습한다. 모델이 산출한 세그멘테이션 마스크들의 조합은 서로 다른 평면의 공간 정보를 보완하며 3 차원 갈비뼈 볼륨을 재건한다. BARS 의 성능은 DSC, Recall, Precision 지표를 사용해 평가하며, DSC 90.29%, Recall 89.74%, Precision 90.72%를 보인다. 향후에는 이를 기반으로 순차적 갈비뼈 레이블링 연구를 진행할 계획이다.

A Study on Image Quality Improvement for 3D Pagoda Restoration (3D 탑복원을 위한 화질 개선에 관한 연구)

  • Kim, Beom Jun-Ji;Lee, Hyun-woo;Kim, Ki-hyeop;Kim, Eun-ji;Kim, Young-jin;Lee, Byong-Kwon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.145-147
    • /
    • 2022
  • 본 논문에서는 훼손되어 식별할 수 없는 탑 이미지를 비롯해 낮은 해상도의 탑 이미지를 개선하기 위해 우리는 탑 이미지의 화질 개선을 인공지능을 이용하여 빠르게 개선을 해 보고자 한다. 최근에 Generative Adversarial Networks(GANS) 알고리즘에서 SrGAN 알고리즘이 나오면서 이미지 생성, 이미지 복원, 해상도 변화 분야가 지속해서 발전하고 있다. 이에 본 연구에서는 다양한 GAN 알고리즘을 화질 개선에 적용해 보았다. 탑 이미지에 GAN 알고리즘 중 SrGan을 적용하였으며 실험한 결과 Srgan 알고리즘은 학습이 진행되었으며, 낮은 해상도의 탑 이미지가 높은 해상도, 초고해상도 이미지가 생성되는 것을 확인했다.

  • PDF

Cylindrical Coordinate Generation for Femur and its Application (대퇴골에 대한 원통형 좌표계의 생성 및 응용)

  • Udeok Seo;Ku-Jin Kim;Yoo-Joo Choi
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.735-737
    • /
    • 2023
  • 본 논문에서는 대퇴골의 3D 메쉬 모델에 대해 원통형 좌표계(cylindrical coordinate system)를 생성하는 방법을 제안한다. 원통형 좌표계는 대퇴골 메쉬의 방향에 따라 장축 및 단축을 결정한 뒤, 대퇴골을 포함하는 원통(right circular cylinder)을 계산하여 생성된다. 실험을 통해, 생성된 원통형 좌표계에서 균일하게 생성한 삼각형 메쉬(triangular mesh)를 대퇴골 메쉬에 투사한 결과를 보인다.