• Title/Summary/Keyword: 3D 매트릭스 개질기

Search Result 4, Processing Time 0.015 seconds

The Study of Effect of Steam on Partial Oxidation for Model Biogas using 3D Matrix Reformer (3D 매트릭스 개질기를 활용한 모사 바이오가스 부분산화 및 수증기 영향 연구)

  • Lim, Mun-Sup;Chun, Young-Nam
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.6
    • /
    • pp.772-779
    • /
    • 2011
  • New type of syngas generator based on the partial oxidation of biogas in volumetric permeable matrix reformers was suggested as an effective, adaptable and relatively simple way of syngas and hydrogen production for various low-scale applications. The use of biogas as an energy source reduces the chance of possible emission of two greenhouse gases, $CH_4$ and $CO_2$, into the atmosphere at the same time. Its nature of being a reproducible energy source makes its use even more attractive. Parametric screening studies were achieved as air ratio, biogas component ratio, input gas temperature, Steam/Carbon ratio. As the air ratio was low, the production of the hydrogen and carbon monoxide increased in the condition that 3D matrix reformer maintains the stable driving. As it was the simulation biogas in which the carbon dioxide content is high, the flammable range became narrow. And the flammable range was extended if the injected gas was preheated. The stable driving was possible in the low air ratio. The amount of hydrogen production was increased as S/C ratio increased.

The Study of Model Biogas Catalyst Reforming Using 3D IR Matrix Burner (3D IR 매트릭스 버너에 의한 모사 바이오가스 촉매 개질 연구)

  • Lim, Mun Sup;Chun, Young Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.840-846
    • /
    • 2012
  • Global climate changes caused by $CO_2$ emissions are currently debated around the world; green sources of energy are being sought as alternatives to replace fossil fuels. The sustainable use of biogas for energy production does not contribute to $CO_2$ emission and has therefore a high potential to reduce them. Catalytic steam reforming of a model biogas ($CH_4:CO_2$ = 60%:40%) is investigated to produce $H_2$-rich synthesis gas. The biogas utilized 3D-IR matrix burner in which the surface combustion is applied. The ruthenium catalyst was used inside a reformer. Parametric screening studies were achieved as Steam/Carbon ratio, biogas component ratio, Space velocity and Reformer temperature. When the condition of Steam/Carbon ratio, $CH_4/CO_2$ ratio, Space velocity and Refomer temperature were 3.25, 60% : 40%, $14.7L/g{\cdot}hr$ and $550^{\circ}C$ respectively, the hydrogen concentration and methane conversion rate were showed maximum values. Under the condition mentioned above, $H_2$ yield, $H_2$/CO ratio, CO selectivity and energy efficiency were 0.65, 2.14, 0.59, 51.29%.

The Study of Steam Reforming for Model Bioigas using 3D-IR Matrix Burner Reformer (3D-IR Matrix 버너 개질기를 활용한 모사 바이오가스 수증기 개질 연구)

  • Lim, Mun-Sup;Chun, Young-Nam
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.1
    • /
    • pp.100-108
    • /
    • 2011
  • The use of biogas as an energy source reduces the chance of possible emission of two greenhouse gases, $CH_4$ and $CO_2$, into the atmosphere at the same time. Its nature of being a reproducible energy source makes its use even more attractive. This research if for the hydrogen production through the steam reforming of the biogas. The biogas utilized 3D-IR matrix burner in which the surface combustion is applied. The nickel catalyst was used inside a reformer. Parametric screening studies were achieved as Steam/Carbon ratio, biogas component ratio, Space velocity and Reformer temperature. When the condition of Steam/Carbon ratio, $CH_4/CO_2$ ratio, Space velocity and Refomer temperature were 3.25, 60%:40%, 19.32L/$g{\cdot}hr$ and $700^{\circ}C$ respectively, the hydrogen concentration and methane conversion rate were showed maximum values. Under the condition mentioned above, $H_2$ concentration was 73.9% and methane conversion rate was 98.9%.

Surface Modification of Synthetic Graphite as an Electrode by Fluidized-bed Chemical Vapor Deposition for Lithium Secondary Batteries (유동상 화힉증착에 의한 리튬이차전지 전극용 탄소재료의 표면개질)

  • Ryu D. H.;Lee Joong Kee;Park D. G.;Yun K. S.;Cho B. W.;Shul Y. G.
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.3
    • /
    • pp.173-177
    • /
    • 2000
  • The synthetic carbon was coated with tin oxide and copper by fluidized-bed chemical vapor deposition method. $(CH_3)_4Sn\;and\;Cu(hfac)_{2s}$ were employed as the metallic organic precursor, respectively. The modified synthetic carbons were used for lithium secondary battery anode to investigate their coating effects on electrochemical characteristics as alternative anode materials for lithium secondary batteries. The electrode which prepared by the synthetic carbons(MCMB) coated with tin oxide gave the higher capacity than that of raw material. Their capacity decreased with the progress of cycling possibly due to severe volume changes. But the cyclability was improved by coating with copper on the surface of the tin oxide coated carbon, which plays an important role as an inactive matrix buffering volume changes.