• 제목/요약/키워드: 3D 대응점

검색결과 174건 처리시간 0.027초

애니메이션을 위한 통계적 모델에 기반을 둔 3D 얼굴모델링 (3D Face Modeling based on Statistical Model for Animation)

  • 오두식;김재민;조성원;정선태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.435-438
    • /
    • 2008
  • 본 논문에서는 애니메이션을 위해서 얼굴의 특징표현(Action Units)의 조합하는 방법으로 얼굴 모델링을 하기 위한 3D대응점(3D dense correspondence)을 찾는 방법을 제시한다. AUs는 표정, 감정, 발음을 나타내는 얼굴의 특징표현으로 통계적 방법인 PCA (Principle Component Analysis)를 이용하여 만들 수 있다. 이를 위해서는 우선 3D 모델상의 대응점을 찾는 것이 필수이다. 2D에서 얼굴의 주요 특징 점은 다양한 알고리즘을 이용하여 찾을 수 있지만 그것만으로 3D상의 얼굴 모델을 표현하기에는 적합하지 않다. 본 논문에서는 3D 얼굴 모델의 대응점을 찾기 위해 원기둥 좌표계 (Cylinderical Coordinates System)을 이용하여 3D 모델을 2D로 투사(Projection)시켜서 만든 2D 이미지간의 워핑(Warping) 을 통한 대응점을 찾아 역으로 3D 모델간의 대응점을 찾는다. 이것은 3D 모델 자체를 변환하는 것보다 적은 연산량으로 계산할 수 있고 본래 형상의 변형이 없다는 장점을 가지고 있다.

  • PDF

다시점 카메라로부터 획득된 깊이 및 컬러 영상을 이용한 실내환경의 파노라믹 3D 복원 (Panoramic 3D Reconstruction of an Indoor Scene Using Depth and Color Images Acquired from A Multi-view Camera)

  • 김세환;우운택
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 1부
    • /
    • pp.24-32
    • /
    • 2006
  • 본 논문에서는 다시점 카메라부터 획득된 부분적인 3D 점군을 사용하여 실내환경의 3D 복원을 위한 새로운 방법을 제안한다. 지금까지 다양한 양안차 추정 알고리즘이 제안되었으며, 이는 활용 가능한 깊이 영상이 다양함을 의미한다. 따라서, 본 논문에서는 일반화된 다시점 카메라를 이용하여 실내환경을 복원하는 방법을 다룬다. 첫 번째, 3D 점군들의 시간적 특성을 기반으로 변화량이 큰 3D 점들을 제거하고, 공간적 특성을 기반으로 주변의 3D 점을 참조하여 빈 영역을 채움으로써 깊이 영상 정제 과정을 수행한다. 두 번째, 연속된 두 시점에서의 3D 점군을 동일한 영상 평면으로 투영하고, 수정된 KLT (Kanade-Lucas-Tomasi) 특징 추적기를 사용하여 대응점을 찾는다. 그리고 대응점 간의 거리 오차를 최소화함으로써 정밀한 정합을 수행한다. 마지막으로, 여러 시점에서 획득된 3D 점군과 한 쌍의 2D 영상을 동시에 이용하여 3D 점들의 위치를 세밀하게 조절함으로써 최종적인 3D 모델을 생성한다. 제안된 방법은 대응점을 2D 영상 평면에서 찾음으로써 계산의 복잡도를 줄였으며, 3D 데이터의 정밀도가 낮은 경우에도 효과적으로 동작한다. 또한, 다시점 카메라를 이용함으로써 수 시점에서의 깊이 영상과 컬러 영상만으로도 실내환경 3D 복원이 가능하다. 제안된 방법은 네비게이션 뿐만 아니라 상호작용을 위한 3D 모델 생성에 활용될 수 있다.

  • PDF

연속된 영상으로부터 조밀한 대응점을 이용한 3차원 재구성 (Three-Dimensional Reconselction using the Dense Correspondences from Sequence Images)

  • 서융호;김상훈;최종수
    • 한국통신학회논문지
    • /
    • 제30권8C호
    • /
    • pp.775-782
    • /
    • 2005
  • 비교정 연속영상(uncalibrated sequence images)에서의 조밀한 데이터로부터 3차원 재구성할 경우, 대량의 대응점 탐색 문제 및 계산시간 문제에 봉착한다. 본 논문에서는 이에 대한 대응책으로, 비교정 영상에서 중요영상 선택법을 제안하고, 이를 이용해 최소한의 영상으로 효율적인 3차원 재구성하는 새로운 방법을 제안한다. 즉 입력된 영상에서 소수만의 영상을 이용해서 작업을 수행하게 된다. 선택된 중요영상에서 대응점을 선택한다. 선택된 대응점은 카메라 교정을 수행하는데 이용된다. 외곽선 이미지를 이용하여 조밀한 형태의 대응점을 추출한다. 조밀한 대응점을 찾기 위한 제안된 알고리즘은 3차원 구조 복원을 효과적으로 수행하는데 이용된다.

깊이 및 컬러 영상을 이용한 실내환경의 3D 복원 (3D Reconstruction of an Indoor Scene Using Depth and Color Images)

  • 김세환;우운택
    • 한국HCI학회논문지
    • /
    • 제1권1호
    • /
    • pp.53-61
    • /
    • 2006
  • 본 논문에서는 다시점 카메라를 이용하여 실내환경의 3D 복원을 위한 새로운 방법을 제안한다. 지금까지 다양한 양안차 추정 알고리즘이 제안되었으며, 이는 활용 가능한 깊이 영상이 다양함을 의미한다. 따라서 본 논문에서는 일반화된 다시점 카메라로 여러 방향에서 획득된 3D 점군을 이용한 실내환경 복원 방법을 다룬다. 첫 번째, 3D 점군들의 시간적 특성을 기반으로 변화량이 큰 3D 점들을 제거하고, 공간적 특성을 기반으로 주변의 3D 점을 참조하여 빈 영역을 채움으로써 깊이 영상 정제 과정을 수행한다. 두 번째, 연속된 두 시점에서의 3D 점군을 동일한 영상평면으로 투영하고 수정된 KLT (Kanade-Lucas-Tomasi) 특징 추적기를 사용하여 대응점을 찾는다. 그리고 대응점간의 거리 오차를 최소화함으로써 정밀한 정합을 수행한다. 마지막으로, 여러 시점에서 획득된 3D 점군과 한 쌍의 2D 영상을 동시에 이용하여 3D 점들의 위치를 세밀하게 조절함으로써 최종적인 3D 모델을 생성한다. 제안된 방법은 대응점을 2D 영상 평면에서 찾음으로써 계산의 복잡도를 줄였으며, 3D 데이터의 정밀도가 낮은 경우에도 주변화소와의 상관관계를 이용함으로써 효과적으로 동작한다. 또한, 다시점 카메라를 이용함으로써 수 시점에서의 깊이 영상과 컬러 영상만으로도 실내환경에 대한 3D 복원이 가능하다. 제안된 방법은 네비게이션 뿐만 아니라 상호작용을 위한 가상 환경 생성 및 Mediated Reality (MR) 응용 분야에 활용될 수 있다.

  • PDF

최대 클릭을 이용한 2차원 데이터의 대응관계로부터 3차원 좌표복원 (3D point recovery from 2D correspondence Using Maximum Clique)

  • 김성진;추창우;이동훈;정순기;원광연
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.619-621
    • /
    • 1999
  • 여러 대의 카메라를 통해 캡춰된 2차원 데이터를 사용하여 3차원의 좌표를 추출하기 위해서는 각 카메라의 2차원 영상 데이터들의 대응점(correpondence point)을 구해야 한다. 이를 위해 에피폴라 제약조건(epipolar constraints)을 이용하여 에피포라 라인(epipolar line)에 근접한 점을 추출할 수 있다. 에피폴라 제약조건을 사용하면, 실제 원하는 점 이외에 많은 수의 고스트(ghost)가 발생할 수 있다. 또한 카메라로부터 은닉(occlusion)된 점들로 인해 모든 카메라에서 대응되는 점이 존재하는지의 여부를 보장할 수 없다. 본 논문에서는 가 카메라의 대응관계를 k-partite graph로 모델링하고, 전역 탐색을 위해 가중치를 적용하여 클릭(clique)을 추출함으로서, 고스트가 제거된 대응점을 구한다.

  • PDF

3차원 복원 정밀도 향상을 위한 영상처리 연구 (A Study on Image Processing for the Accuracy Improvement of 3D Recovery)

  • 이숙윤;장석우
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2012년도 제45차 동계학술발표논문집 20권1호
    • /
    • pp.193-195
    • /
    • 2012
  • 본 논문에서는 구조광 3차원 시스템을 위하여 영상처리를 하여 3차원 정밀도를 높이는 방법을 제안한다. 구조광 기반의 3차원 시스템은 투사된 패턴을 특징점으로 하기 때문에 프로젝터와 카메라 사이에 정확한 대응점을 획득해야만 3차원 복원 신뢰성을 높일 수 있다. 그러나 환경에 따라 정확한 대응점 획득이 어려운 점이 많다. 실제 환경에서 물체들은 물체의 재질과 물체 표면의 색상 등의 이유로 서로 다른 반사율을 가지고 있어 여러 물체들이 혼재 되어 있는 환경에서 각각 물체에 투사된 패턴을 정확히 구별하는 일은 어려운 일이다. 따라서 패턴을 획득한 2차원 영상을 개선하여 패턴을 정확히 구별하여 프로젝터와 카메라 간의 화소 대응점의 정확도를 높여야만 3차원 복원 데이터의 신뢰도를 높일 수 있다. 따라서 본 논문에서는 노이즈 제거 및 다양한 영상처리를 통하여 2차원 영상들에서 패턴을 정확히 구분하도록 하여 화소 대응점의 정확도를 높임으로써 최종적으로 3차원 정밀도를 개선할 수 있는 방법을 제공한다.

  • PDF

대응점 및 히스토그램을 이용한 영상 간의 컬러 차이 측정 기법 (Method of Measuring Color Difference Between Images using Corresponding Points and Histograms)

  • 황영배;김제우;최병호
    • 방송공학회논문지
    • /
    • 제17권2호
    • /
    • pp.305-315
    • /
    • 2012
  • 두 카메라 혹은 다수의 카메라에서의 컬러 보정은 이후 알고리즘의 성능 향상 및 양안식 3D 카메라에서 매우 중요한 기술이다. 최근 컬러 보정 방법들이 다수 제안되었지만 이 방법들의 결과에 대한 정확한 측정 방법이 많지 않으며 기존의 측정 방법은 두 영상이 카메라의 위치에 따른 서로 다른 장면을 가지고 있을 경우 적합하지 않을 수 있다. 본 논문에서는 컬러 보정을 위한 컬러 간의 차이 측정 기법을 제안한다. 이 기법은 대상이 되는 두 영상의 장면이 일치하지 않는 경우를 고려하여 대응점 검색을 통해 두 장면간의 같은 컬러를 가져야 하는 대응점을 찾고 이 대응점 주위의 영역으로부터 통계치를 계산하여 컬러의 차이를 계산한다. 이 경우 두 영상의 위치 변화를 하나의 기하학적 변환으로 설명하는 기존 방법에서 생길 수 있는 대응점간의 불일치를 고려할 수 있다. 또한 대응점들이 영상의 모든 영역을 포함하지 않을 수 있기 때문에 전체 영상의 통계치를 계산하여 컬러의 차이를 측정한다. 최종적인 컬러의 차이는 대응점 기반과 전체 영상 기반의 컬러 차이의 가중치의 합으로 결정되며 이 가중치는 대응점 기반의 컬러 비교가 영상 내의 얼마만큼의 영역을 포함하는지에 따라서 결정된다.

3차원 기하정보 및 특징점 추적을 이용한 다시점 거리영상의 온라인 정합 (Online Multi-view Range Image Registration using Geometric and Photometric Feature Tracking)

  • 백재원;문재경;박순용
    • 정보처리학회논문지B
    • /
    • 제14B권7호
    • /
    • pp.493-502
    • /
    • 2007
  • 본 논문에서는 물체의 3차원 모델을 복원하기 위하여 거리영상 카메라에서 획득한 다시점 3차원 거리영상을 온라인으로 정합(registration)하는 기술을 제안한다. 3차원 모델 복원을 위하여 거리영상 카메라를 복원하고자하는 물체 주위로 이동하여 연속된 다시점 거리영상과 사진영상을 획득하고 물체와 배경을 분리한다. 분리된 다시점 거리영상의 정합을 위하여 이미 등록된 거리영상의 변환정보 그리고 두 거리영상 사이의 기하정보를 이용하여 정합을 초기화한다. 위 과정을 통해 서로 인접한 거리영상에서 영상 특징점을 선택하고 특징점에 해당하는 거리영상의 3차원 점군을 이용하여 투영 기반(projection-based) 정합을 실시한다. 기하정합이 완료되면 사진영상 간의 대응점을 추적하여 정합을 정제(refinement)하는 과정을 거치는데 KLT (Kanade-Lucas-Tomasi) 추적기를 수정하여 대응점 탐색의 속도와 성공률을 증가시켰다. 영상 특징점과 추적된 대응점에 해당하는 3차원 점군을 이용하여 거리영상을 정제하였다. 정합과 정제의 결과를 통해 추정된 변환 행렬과 정합된 대응점들 사이의 거리를 계산하여 정합 결과를 검증하고 거리영상의 사용 여부를 결정한다. 만약 정합이 실패하더라도 경우에도 거리영상을 실시간으로 계속 획득하고 정합을 다시 시도한다. 위와 같은 과정을 반복하여 충분한 거리 영상을 획득하고 정합이 완료되면 오프라인에서 3차원 모델을 합성하였다. 실험 결과들을 통해 제안한 방법이 3차원 모델을 성공적으로 복원할 수 있음을 확인 할 수 있었고 오차 분석을 통해 모델 복원의 정확도를 검증하였다.

실내환경 복원을 위한 다시점 카메라로 획득된 부분적 3차원 점군의 정합 기법 (Registration Technique of Partial 3D Point Clouds Acquired from a Multi-view Camera for Indoor Scene Reconstruction)

  • 김세환;우운택
    • 전자공학회논문지CI
    • /
    • 제42권3호
    • /
    • pp.39-52
    • /
    • 2005
  • 본 논문에서는 실내환경의 3차원 복원을 위해 다시점 카메라부터 획득된 부분적인 3차원 점군에 대한 정합 기법을 제안한다. 일반적으로, 기존의 정합 방법들은 많은 계산량을 요하며, 정합하는데 많은 시간이 소요된다 또한, 상대적으로 정밀도가 낮은 3차원 점군에 대해서는 정합이 어렵다. 이러한 문제점을 해결하기 위해 투영 기반 정합 방법을 제안한다. 첫 번째, 시간적 특성을 기반으로 변화량이 큰 3차원 점들을 제거하고, 공간적 특성을 이용하여 현재 화소의 주변 3차원 점을 참조하여 빈 영역을 채움으로써 깊이 영상 정제 과정을 수행한다. 두 번째, 연속된 두 장면에서의 3차원 점군을 동일한 영상 평면으로 투영하고, 두 단계 정수 매핑을 적용한 후 수정된 KLT (Kanade-Lucas-Tomasi) 특징 추적기를 사용해 대응점을 찾는다. 그리고 적응적 탐색 영역에 기반하여 거리 오차를 최소화함으로써 정밀한 정합을 수행한다. 마지막으로, 대응되는 점들에 대한 색을 참조하여 최종적인 색을 계산하고, 위의 과정을 연속된 장면에 적용함으로써 실내환경을 복원한다. 제안된 방법은 대응점을 2차원 영상 평면에서 찾음으로써 계산의 복잡도를 줄이며, 3차원 데이터의 정밀도가 낮은 경우에도 정합이 효과적이다. 또한, 다시점 카메라를 이용함으로써 몇 장면에 대한 색과 깊이 영상만으로도 실내환경의 3차원 복원이 가능하다.

효과적인 3차원 디스플레이를 위한 다시점 영상왜곡 보정처리 시스템 구현 (Implementation of Multiview Calibration System for An Effective 3D Display)

  • 배경훈;박재성;이동식;김은수
    • 한국통신학회논문지
    • /
    • 제31권1C호
    • /
    • pp.36-45
    • /
    • 2006
  • 본 논문에서는 효과적인 3차원 영상 디스플레이를 위한 다시점 영상왜곡 보정처리 시스템 구현을 제안한다. 본 논문에서 제안한 보정처리 시스템은 기존의 스테레오 방식에서 확장된 4시점으로 카메라를 구성하여 영상을 획득하고 다시점 영상 간에 발생할 수 있는 렌즈의 왜곡, 카메라 오차 및 크기, 카메라 간 밝기 및 색상, 영상 간 밝기 균일도 등의 영상의 보정 신호처리에 대한 방법을 제시한다. 본 논문에서 제안된 시스템에서는 카메라 간 밝기 및 색상 보상은 각 영상의 특징점과 대응점을 찾아 영상 전체에 대한 대응점을 추출하여 색 변환을 통해 영상을 보정하였고 밝기 및 균일도 처리는 각 영상의 밝기차이 맵을 생성하여 보상하였다. 또한 렌즈의 구면수차로 인한 왜곡은 각 영상의 패턴을 검출한 후 렌즈 왜곡을 보정하고 카메라의 오차 및 크기 보상을 통해 다시점 3차원 디스플레이시 발생되는 왜곡현상을 해결하여 보다 효과적인 3차원 입체 디스플레이가 가능하도록 하였다.