3차원 물체 인식은 학습에 의해서 구성된 모델베이스를 이용하여 주어진 입력 영상에 존재하는 한 개 혹은 여러 개의 물체를 구별하는 과정이다. 본 논문에서는 입력 거리 정보를 받아들여 이 정보로부터 보이는 각 면에 대한 특징을 추출해낸 후 이 특징들을 입력 영상에 존재하는 물체를 묘사하는 특징으로 사용하여 이로부터 모델을 결정하는 방법을 제시한다. 영상 분할된 입력 물체는 그래프로 표현되는데, 물체 인식은 입력 물체의 그래프를 모델 베이스의 각 모델의 그래프와 정합하는 고정에서 얻어진다. 제한 조건은 만족시키는 정합을 수행하기 위하여 mean field annealing (MFA) 신경 회로망을 사용하였으며 가려진 물체 인식을 수행할 수 있는 정합을 위해 에너지 함수를 제안하였다. 제안한 알고리듬의 효용성을 입증하기 위하여 가려짐의 정도를 다르게 한 합성영상에 대해서 모의 실험을 하였다.
TOF(Time of Flight) 기술은 물체의 3차원 깊이 정보 추출을 가능케 하는 기술 중의 하나이다. 하지만, TOF의 카메라의 출력인 깊이 영상을 이용한 물체의 3차원 위치 추출은 몸이나 손 등 크기가 큰 물체의 경우에는 비교적 신뢰성 있는 결과를 얻을 수 있는데 비하여 크기가 작은 손 끝의 경우에는 신뢰할 수 있는 값을 얻기 힘들다. 본 논문에서는 TOF 카메라에서 육면체 손 모델을 이용하여 수정된 손의 영상에서의 위치 정보와 팔 모델을 이용하여 손 끝의 3차원 좌표를 추정한다. 제안된 방법으로 실험을 한 결과 TOF 카메라의 깊이 영상만을 사용하여 인식한 손 끝의 3차원 위치정보와 비교하여 훨씬 더 향상된 결과를 얻을 수 있었다.
로봇이 어떤 물체를 인지하고 그 물체에 대해 어떤 작업을 하고자 할 때 특정 물체의 인식 문제, 3차원 정보를 획득하는 문제, 자세를 추정하는 문제 등 해결해야 될 문제들이 있다. 물체를 인식하는 과정에서는 주위 배경과 물체의 크기의 변화, 회전, 가려짐 등으로 인해 물체 인식을 어렵게 만드는 요소들이 있다. 2차원 이미지를 통해 3차원 정보를 추출하는 과정은 일반적으로 두 대의 카메라를 이용하여 스테레오 이미지를 통해 얻는다. 이 때 좌우 영상간의 매칭의 과정이 필요하다. 자세 추정의 문제는 카메라 좌표와 물체의 좌표간의 관계를 알아야 한다. Visual Servoing을 어렵게 만드는 많은 요인들이 있으며 본 논문에서는 물체의 크기, 회전, 이동에 불변인 디스크립터(descriptor)를 사용하는 SIFT(Scale Invariant Feature Transform)를 통해 3차원 물체의 인식과 자세를 추정하는 방법을 제시한다. 또한 자세 추정을 위해 2차원 Keypoint들의 매칭을 3차원 정보를 통해 검증하는 방법을 제시한다. (SIFT에 의해 추출된 point를 Keypoint라 명한다.)
2차원 밝기 영상에서 3차원 정보를 얻는 문제는 컴퓨터 시각 연구에서 매우 중요한 분야를 차지하고 있다. 이러한 목적을 위해 먼저 2차원 영상을 취득할 때 카메라의 위치, 광원의 방향, 영상내 물체의 반사특성 등 본질적인 정보를 이용한다. 이중에서 물체의 표면 반사특성은 매우 중요한 단서가 된다. 과거에는 물체의 반사특성을 Lambertian 반사만을 전제하여 연구를 진행했지만 실세계의 물체는 대부분 Non-Lambertian 반사특성을 갖는다. 본 논문에서는 2차원 밝기 영상에서 물체의 반사특성을 해석하고, 반사특성 파라미터를 추정하여 물체의 형상을 복구하는 새로운 방법과 반사특성을 모르는 상황에서 신경회로망 학습에 의해 형상을 복구하는 방법을 제안한다. 물체의 반사특성은 전반사 성분과 난반사 성분을 함께 갖는 Non-Lambertian 면을 그 대상으로 하며, 이러한 반사특성은 전반사(Torrance-Sparrow) 모델과 난반사(Lambertian) 모델의 선형적인 합으로 설명될 수 있다. 본 논문에서 제안한 Photometric Matching은 주변 화소의 밝기 분포를 고려하여 참조영상과의 매칭을 통한 형상복구 알고리듬으로써 기존의 Photometric Stereo에 근본을 두고 있지만, 잡음 및 오차의 누적 정도가 향상되었다. 또한 물체의 반사특성을 모르는 상황에서 신경회로망 학습에 의한 형상복구방법을 제안한다. 이 방법은 역전파 학습알고리듬을 이용해 광원 방향에 따른 밝기값에 대해 면법선을 교사하여 형상을 결정한다.
본 논문에서는 멀티 레이저 라인 조사 방법을 이용한 능동적 비젼(Active Vision)의 방법으로 비등속 이동물체의 표면을 효율적으로 모델링 하는 방법을 제안한다. 레이저 라인을 물체에 조사하고 레이저가 조사된 방향과 각도를 달리한 방향에서 이를 관찰하면 레이저 라인이 표면의 굴곡에 따라 휘어지는 현상을 관찰할 수 있다. 이를 삼각기법(triangulation method)을 이용하여 분석하면 물체의 표면 3차원 정보 획득이 가능하다. 기존에 대표적 구조화 조명기법인 단일 라인(single stripe) 기법과 단일 프레임(single frame) 기법의 장단점과 제안하는 멀티 라인 기법의 장점을 설명하고 정밀도를 높이기 위한 레이저 라인의 효율적 배치에 대하여 설명한다. 강인한 레이저 라인의 추출을 위하여, 레이저 라인 피크 검출기법과 색 분석을 통해 얻은 레이저 반응도를 함께 이용하는 방법을 소개하였고, 효과적인 레이저 라인의 라벨링 기법을 새로 제안하였다. 개별 3차원 복원 표면을 전체영상으로 표현하기 위하여 동기화 정보 획득에 영상 간 특징점 매칭을 활용한 영상 정합 기법을 접목하였다. 3차원 표면 모델링 기술을 최종적으로 컨테이너 표면 데미지 검사에 활용하여 제안 3D 모델링 기술의 우수성을 확인하였다.
본 논문은 수중에서 사용되는 영상 소나를 이용하여 수중 물체의 외형 복원을 수행하여 보고 그 결과를 분석한다. 일반적으로 해양 측량에 많이 사용되는 다중빔 해양 측심기(Multi-beam echo sounder, MES)보다 더 자세한 수중 환경 관찰이 가능한 영상 소나는 상하 방사영역 정보의 불확실성으로 인해 3차원 복원 연구로 활용되기에 어려움이 있다. 이에 본 논문에서는 소나 영상에서 얻는 물체에 대한 3차원 높이 정보의 불확실성을 줄이기 위해 영상 소나의 상하 방사영역을 좁게 조정하여 영상 소나의 3차원 물체 외형 복원의 어려움을 극복하고자 한다. 또한, 음향 채널별 잡음 제거 필터를 적용하고, 음향 채널별 상호보완 거리값 검출 방법의 적용을 통해 3차원 위치 정보의 정확도를 높이고자 한다. 제안한 수중 물체 외형 복원 방법은 3가지 물체(원뿔, 구, 기둥)에 대해 3차원 복원 실험을 수행하여 보고 그 결과를 분석하였다.
본 논문에서는 웨이블릿 변환을 이용하여 추정된 변위 벡터와 이를 이용한 물체의 분할을 통해 특징 점을 추출하고 3차원 와이어 프레임(wire-frame)을 생성하는 알고리즘을 제안한다. 우선, 웨이블릿 변환을 이용하여 빠른 시간 안에 변위를 측정하고, 이를 통해 배경과 물체를 분리해 내었다. 그런 뒤에, 변위 벡터를 이용하여, 깊이 정보를 추정해 내고, 동시에 물체로부터 두드러진 특징 값들을 추출하여 3차원 와이어 프레임 생성을 위한 거리 값으로 사용하였다. 마지막으로, 일반적인 delaunay triangulation에서 생길 수 있는 오 정합을 본 논문에서 제안하는 전경/배경 분할 알고리즘을 이용하여 제거 하여 정확한 3차원 모델을 생성하였다. 아울러, 본 논문에서 제안하는 웨이블릿을 이용한 빠른 3D 모델링 방법을 원 영상을 이용한 방법과 비교하여, 더 좋은 결과를 보여줌으로써, 계산 시간 뿐만 아니라 정확성에서도 만족할 만한 결과를 얻을 수 있었다.
상호작용이 가능한 컴퓨팅 환경에서 사람과 컴퓨터 사이의 자연스러운 정보 교환을 위해 동작 인식과 관련한 연구가 활발하게 이루어지고 있다. 기존의 2차원 특징값을 이용하는 인식 알고리즘은 특징값 추출과 인식 속도는 빠르지만, 정확한 인식을 위해서 많은 환경적인 제약이 따른다. 또한 2.5차원 특징값을 이용하는 알고리즘은 2차원 특징값에 비해 높은 인식률을 제공하지만 물체의 회전 변화에 취약하고, 3차원 특징값을 이용하는 인식 알고리즘은 특징값 추출을 위해 3차원 물체를 재구성하는 선행 과정이 필요하기 때문에 인식 속도가 느리다. 본 논문은 3차원 물체 재구성 단계와 특징값 추출 단계를 통합하여 실시간으로 3차원 정보를 가지는 특징값 추출 방법을 제안한다. 제안하는 방법은 기존의 GPU 기반 비주얼 헐 생성 방법의 세부 과정 중에서 동작 인식에 필요한 데이타 생성 부분만을 수행하여 임의의 시점에서 3차원 물체에 대한 3종류의 프로젝션 맵을 생성하고, 각각의 프로젝션 맵에 대한 후-모멘트(Hu-moment)를 계산한다. 실험에서 우리는 기존의 방법들과 단계별 수행 시간을 비교하고, 생성된 후-모멘트에 대한 혼동 행렬(confusion matrix)을 계산함으로써 제안하는 방법이 실시간 동작 인식 환경에 적용될 수 있음을 확인하였다.
본 논문에서는 스테레오 영상 인식에 기반한 직육면체형 물체의 부피를 계측하는 한 방법이 제안된다. 제안된 방범은 두 대의 CCD(charge coupled device)카메라로부터 획득된 영상에 대하여 관심영역추출, 특징 추출, 그리고 스테레오 정합에 기반한 꼭지점 인식의 과정을 통하여 3D 물체의 부피를 계측한다. 제안된 방법은 3D 물체의 특징을 나타내는 꼭지점 후보들을 영상처리과정을 통해 추출한 후, 이들 꼭지점들에 대해서만 스테레오 정합을 수행함으로써 고속의 부피 계측이 가능한 이점이 있다. 실험을 통하여, 본 논문에서 제안한 방법이 직육면체형 물체의 고속 부피계측에 효과적으로 사용될 수 있음이 보여진다.
본 논문에서는 3차원 영상 처리 시스템을 이용한 이동 물체 추적을 위한 경계선 추출 알고리즘을 제시하였다. 이동 물체의 검출은 입력 영상에서 차 영상 기법을 이용하였고, 이동 물체 검출을 위한 검출 윈도우는 처리시간을 줄이기 위하여 4개의 예상영역과 물체영역으로 구성하였으며, 크기는 이동 물체의 크기와 중심 좌표에 대한 예측 계수에 의해 정하였고, 추적 카메라는 직류 모터에 의해 X, Y 방향으로 이동하도록 하였다. 모형 자동차를 이용하여 알고리즘을 수행한 결과, 최대 추적 시간은 2초였고, 추적 에러는 물체 크기의 6% 이하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.