• Title/Summary/Keyword: 3D물체

Search Result 877, Processing Time 0.026 seconds

Three-Dimensional Object Recognition System Using Shape from Stereo Algorithm (스테레오 기법을 적용한 3차원 물체인식 시스템)

  • Heo, Yun-Seok;Hong, Bong-Hwa
    • The Journal of Information Technology
    • /
    • v.7 no.4
    • /
    • pp.1-8
    • /
    • 2004
  • The depth information of 3D image lost by projecting 3D-object to 2D-screen for earning image. If depth information is restored and is used to recognize 3D-object, we can make the more effective recognition system. We often use shape from stereo algorithm in order to restore this information. In this paper, we suggest 3-D object recognition system in which the 3-D Hough transform domain is employed to represent the 3-D objects. In this system, we use the moving vector of object to reduce matching time and In second matching step, the unknown input image is compared with the reference images, which is made with octree codes. Octree codes are used in volume-based representation of a three dimensional object. The result of simulation show that the proposed 3-D object recognition system provides satisfactory performance.

  • PDF

Schema Definition and Implementation for Web3D Physical Units (웹3D 물리 단위 스키마 정의와 구현)

  • Kim, Lee-Hyun;Park, Chang-Sup;Lee, Myeong-Won
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.3
    • /
    • pp.11-19
    • /
    • 2010
  • This paper describes how to define and implement the schema for 3D virtual objects with physical units so that the objects can be compared in virtual environments based on physical properties, such as length, according to the specified units. We define physical units for virtual objects using the International System of Units and based on the X3D (Extensible 3D) specification. The schema must be defined with validation so that it does not violate the original X3D data structure. In this paper, we have extended the original X3D schema with a physical unit specification, and demonstrate the difference between units-specified and non-units-specified 3D scenes using an X3D browser that we developed.

Progressive Reconstruction of 3D Objects from a Single Freehand Line Drawing (Free-Hand 선화로부터 점진적 3차원 물체 복원)

  • 오범수;김창헌
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.3_4
    • /
    • pp.168-185
    • /
    • 2003
  • This paper presents a progressive algorithm that not only can narrow down the search domain in the course of face identification but also can fast reconstruct various 3D objects from a sketch drawing. The sketch drawing, edge-vertex graph without hidden line removal, which serves as input for reconstruction process, is obtained from an inaccurate freehand sketch of a 3D wireframe object. The algorithm is executed in two stages. In the face identification stage, we generate and classify potential faces into implausible, basis, and minimal faces by using geometrical and topological constraints to reduce search space. The proposed algorithm searches the space of minimal faces only to identify actual faces of an object fast. In the object reconstruction stage, we progressively calculate a 3D structure by optimizing the coordinates of vertices of an object according to the sketch order of faces. The progressive method reconstructs the most plausible 3D object quickly by applying 3D constraints that are derived from the relationship between the object and the sketch drawing in the optimization process. Furthermore, it allows the designer to change viewpoint during sketching. The progressive reconstruction algorithm is discussed, and examples from a working implementation are given.

Predicting Unseen Object Pose with an Adaptive Depth Estimator (적응형 깊이 추정기를 이용한 미지 물체의 자세 예측)

  • Sungho, Song;Incheol, Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.12
    • /
    • pp.509-516
    • /
    • 2022
  • Accurate pose prediction of objects in 3D space is an important visual recognition technique widely used in many applications such as scene understanding in both indoor and outdoor environments, robotic object manipulation, autonomous driving, and augmented reality. Most previous works for object pose estimation have the limitation that they require an exact 3D CAD model for each object. Unlike such previous works, this paper proposes a novel neural network model that can predict the poses of unknown objects based on only their RGB color images without the corresponding 3D CAD models. The proposed model can obtain depth maps required for unknown object pose prediction by using an adaptive depth estimator, AdaBins,. In this paper, we evaluate the usefulness and the performance of the proposed model through experiments using benchmark datasets.

Optical implementation of 3D image correlator using integral imaging technique (집적영상 기술을 이용한 3D 영상 상관기의 광학적 구현)

  • Piao, Yongri;Kim, Seok-Tae;Kim, Eun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1659-1665
    • /
    • 2009
  • In this paper, we propose an implementation method of 3D image correlator using integral imaging technique. In the proposed method, elemental images of the reference and signal 3D objects are recorded by lenslet arrays and then reference and signal output plane images with high resolution are optically reconstructed on the output plane by displaying these elemental images into a display panel. Through cross-correlations between the reconstructed reference and the single plane images, 3D object recognition is performed. The proposed method can provide a precise 3D object recognition by using the high-resolution output plane images compared with the previous methods and implement all-optical structure for real-time 3D object recognition system. To show the feasibility of the proposed method, optical experiments are carried out and the results are presented.

3D Object Restoration and Data Compression Based on Adaptive Simplex-Mesh Technique (적응 Simplex-Mesh 기술에 기반한 3차원 물체 복원과 자료 압축)

  • 조용군
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.436-443
    • /
    • 1999
  • Most of the 3D object reconstruction techniques divide the object into multiplane and approximate the surfaces of the object. The Marching Cubes Algorithm which initializes the mesh structure using a given isovalue. and Delaunay Tetrahedrisation are widely used. Deformable models are well-suited for general object reconstruction because they make little assumptions about the shape to recover and they can reconstruct objects *om various types of datasets. Now, many researchers are studying the reconstruction systems based on a deformable model. In this paper, we propose a novel method for reconstruction of 3D objects. This method, for a 3D object composed of curved planes, compresses the 3D object based on the adaptive simplexmesh technique. It changes the pre-defined mesh structure, so that it may approach to the original object. Also, we redefine the geometric characteristics such as curvatures. As results of simulations, we show reconstruction of the original object with high compression and concentration of vertices towards parts of high curvature in order to optimize the shape description.

  • PDF

Convenient View Calibration of Multiple RGB-D Cameras Using a Spherical Object (구형 물체를 이용한 다중 RGB-D 카메라의 간편한 시점보정)

  • Park, Soon-Yong;Choi, Sung-In
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.8
    • /
    • pp.309-314
    • /
    • 2014
  • To generate a complete 3D model from depth images of multiple RGB-D cameras, it is necessary to find 3D transformations between RGB-D cameras. This paper proposes a convenient view calibration technique using a spherical object. Conventional view calibration methods use either planar checkerboards or 3D objects with coded-pattern. In these conventional methods, detection and matching of pattern features and codes takes a significant time. In this paper, we propose a convenient view calibration method using both 3D depth and 2D texture images of a spherical object simultaneously. First, while moving the spherical object freely in the modeling space, depth and texture images of the object are acquired from all RGB-D camera simultaneously. Then, the external parameters of each RGB-D camera is calibrated so that the coordinates of the sphere center coincide in the world coordinate system.

3D Visualization using Face Position and Direction Tracking (얼굴 위치와 방향 추적을 이용한 3차원 시각화)

  • Kim, Min-Ha;Kim, Ji-Hyun;Kim, Cheol-Ki;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.173-175
    • /
    • 2011
  • In this paper, we present an user interface which can show some 3D objects at various angles using tracked 3d head position and orientation. In implemented user interface, First, when user's head moves left/right (X-Axis) and up/down(Y-Axis), displayed objects are moved towards user's eyes using 3d head position. Second, when user's head rotate upon an X-Axis(pitch) or an Y-Axis(yaw), displayed objects are rotated by the same value as user's. The results of experiment from a variety of user's position and orientation show good accuracy and reactivity for 3d visualization.

  • PDF

Nonlinear 3D Correlator Based on Pixel Restoration for Enhanced Objects Recognition (향상된 물체 인식을 위한 픽셀 복원 기반의 비선형 3D 상관기)

  • Shin, Donghak;Lee, Joon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.712-717
    • /
    • 2013
  • In this paper, we propose a performance-enhanced object recognition by using nonlinear 3D correlator based on pixel restoration. In the proposed method, elemental images of the 3D target that are partially occluded by a foreground object are picked up and transformed into sub-images. By using the block-matching algorithm, the occluded target regions of each sub-image are estimated and removed. After that, the missing pixels in each sub-image are reestablished by using the pixel-restoration method. Finally, through the nonlinear cross-correlations between the reconstructed reference and the target plane images, the improved object recognition can be performed. To show the feasibility of the proposed method, some preliminary experiments are carried out and results are presented by comparing the conventional method.

Sell-modeling of Cylindrical Object based on Generic Model for 3D Object Recognition (3 차원 물체 인식을 위한 보편적 지식기반 실린더형 물체 자가모델링 기법)

  • Baek, Kyeong-Keun;Park, Yeon-Chool;Park, Joon-Young;Lee, Suk-Han
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.210-214
    • /
    • 2008
  • It is actually impossible to model and store all objects which exist in real home environment into robot's database in advance. To resolve this problem, this paper proposes new object modeling method that can be available for robot self-modeling, which is capable of estimating whole model's shape from partial surface data using Generic Model. And this whole produce is conducted to cylindrical objects like cup, bottles and cans which can be easily found at indoor environment. The detailed process is firstly we obtain cylinder's initial principle axis using points coordinates and normal vectors from object's surface after we separate cylindrical object from 3D image. This 3D image is obtained from 3D sensor. And second, we compensate errors in the principle axis repeatedly. Then finally, we do modeling whole cylindrical object using cross sectional principal axis and its radius To show the feasibility of the algorithm, We implemented it and evaluated its accuracy.

  • PDF