• Title/Summary/Keyword: 3D(three-dimensional)

Search Result 4,267, Processing Time 0.031 seconds

Development of optimum modeling approach in prediction of wheelflats effects on railway forces

  • Sadeghi, Javad;Khajehdezfuly, Amin;Esmaeili, Morteza;Poorveis, Davood
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.499-509
    • /
    • 2019
  • While the wheel flat is an asymmetrical phenomenon in the railway, majority of researches have used two-dimensional models in the investigation of the effect of wheel flat on the wheel rail forces. This is due to the considerably low computational costs of two dimensional (2D) models although their reliability is questionable. This leaves us with the question of "what is the optimum modeling technique?". It is addressed in this research. For this purpose, two and three dimensional numerical models of railway vehicle/track interaction were developed. The three dimensional (3D) model was validated by comparisons of its results with those obtained from a comprehensive field tests carried out in this research and then, the results obtained from the 2D and 3D models were compared. The results obtained indicate that there are considerable differences between wheel/rail forces obtained from the 2D and 3D models in the conditions of medium to large wheel-flats. On the other hand, it was shown that the results of the 2D models are reliable for particular ranges of vehicle speed, railway track stiffness and wheel-fats lengths and depths. The results were used to draw a diagram, which presents the optimum modeling technique, compromising between the costs and accuracy of the obtained results.

A Study of the Relationship between 3D Model and 3D Garment Simulation

  • Kim, Yeo-Sook;Park, Hye-Won
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.6
    • /
    • pp.631-640
    • /
    • 2012
  • This research project investigates the differences of various body locations (between 3D body models) and drapes garments digitally onto 3D body models. Three different subject models will be given explication. It consisted of (1) data collection of three-dimensional scans (2) creation of 3D body representations (3) comparison of avatar shapes and measurements (4) visualization and assessment of 3D body models and their 3D virtual garments. The study tests a theory of impact by differences in avatars by pattern design. A visual inspection of avatars showed clear differences between the six avatar types (in the generating process); however, there was notably less difference between 3D garment simulations based upon the six avatars produced. This demonstrated that there was less influence on the 3D garments than was predicted after a visual inspection of the avatars.

A Study on Three-Dimensional Computer Generated Holograms by 3-D Coordinates Transformation (3차원 좌표변환에 의한 입체 컴퓨터 형성 홀로그램에 관한 연구)

  • Ryu, Won-Hyeon;Jeong, Man-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.525-531
    • /
    • 2006
  • Synthesized 3-D CGH of a general three dimensional object is obtained by using a new 3-D coordinates transformation technique. A CCD camera is used to record several projected images of the 3-D object from different viewing angles. The recorded data are numerically calculated and processed to yield two-dimensional complex functions, which are then encoded fer the final synthesized 3-D CGH.

Practical utility of the three-dimensional approach in orthognathic surgery

  • Hwang, Dae-Seok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.47 no.4
    • /
    • pp.337-338
    • /
    • 2021
  • During recent decades, the three-dimensional (3D) approach in orthognathic surgery were introduced and adopted in clinical practice, providing practical advantages to orthognathic surgeons. Even when the 3D approach is assessed based on the current state of technological development, it has advantages in orthognathic surgery and has become an essential method. It is not sure what to come next in the development of the 3D approaches, It is clear that the 3D approach represents a milestone in the development of orthognathic surgery.

A Study on the Dynamic Expression of Fabrics based on RGB-D Sensor and 3D Virtual Clothing CAD System (RGB-D 센서 및 3D Virtual Clothing CAD활용에 의한 패션소재의 동적표현 시스템에 대한 연구)

  • Lee, Jieun;Kim, Soulkey;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.17 no.1
    • /
    • pp.30-41
    • /
    • 2013
  • Augmented reality techniques have been increasingly employed in the textile and fashion industry as well as computer graphics sectors. Three-dimensional virtual clothing CAD systems have also been widely used in the textile industries and academic institutes. Motion tracking techniques are grafted together in the 3D and augmented reality techniques in order to develop the virtual three-dimensional clothing and fitting systems in the fashion and textile industry sectors. In this study, three-dimensional virtual clothing sample has been prepared using a 3D virtual clothing CAD along with a 3D scanning and reconstruction system. Motion of the user has been captured through an RGB-D sensor system, and the virtual clothing fitted on the user's body is allowed to move along with the captured motion flow of the user. Acutal fabric specimens are selected for the material characterization. This study is a primary step toward building a comprehensive system for the user to experience interactively virtual clothing under real environment.

A Performance analysis of robot tele-operator using 3D Images (입체영상(立體映像)을 이용한 원격Robot 조작자의 수행도 분석)

  • Jo, Am;Jeon, Yong-Ung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.127-140
    • /
    • 1999
  • In order to apply three-dimensional images to industries, the possibility of realizing three-dimensional images should be ensured and when operating a task using three-dimensional images, the intention of the observer and the result of operation should be precisely related. The aim of this paper is to investigate the task performance of a human operator during operating a robot manipulator using three-dimensional and two-dimensional image displays. From the result of this research, it was found that the accuracy of robot operation in the case of using three-dimensional displays is much higher than in the case of using two-dimensional displays and the adapting time to the operating task using three-dimensional displays is shorter than that using two-dimensional displays. From such results, we concluded that the application of three-dimensional displays, which can closely reflect real environment, to industries is desirable.

  • PDF

3D Printed Titanium Implant for the Skull Reconstruction: A Preliminary Case Study

  • Choi, Jong-Woo;Ahn, Jae-Sung
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.2
    • /
    • pp.99-102
    • /
    • 2014
  • The skull defect can be made after the trauma, oncologic problems or neurosurgery. The skull reconstruction has been the challenging issue in craniofacial fields for a long time. So far the skull reconstruction with autogenous bone would be the standard. Although the autogenous bone would be the ideal one for skull reconstruction, donor site morbidity would be the inevitable problem in many cases. Meanwhile various types of allogenic and alloplastic materials have been also used. However, skull reconstruction with many alloplastic material have produced no less complications including infection, exposure, and delayed wound healing. Because the 3D printing technique evolved so fast that 3D printed titanium implant were possible recently. The aim of this trial is to try to restore the original skull anatomy as possible using the 3D printed titanium implant, based on the mirrored three dimensional CT images based on the computer simulation. Preoperative computed tomography (CT) data were processed for the patient and a rapid prototyping (RP) model was produced. At the same time, the uninjured side was mirrored and superimposed onto the traumatized side, to create a mirror-image of the RP model. And we fabricated Titanium implant to reconstruct three-dimensional orbital structure in advance, using the 3D printer. This prefabricated Titanium-implant was then inserted onto the defected skull and fixed. Three dimensional printing technique of titanium material based on the computer simulation turned out to be very successful in this patient. Individualized approach for each patient could be an ideal way to manage the traumatic patients in near future.

Difference in glenoid retroversion between two-dimensional axial computed tomography and three-dimensional reconstructed images

  • Kim, Hyungsuk;Yoo, Chang Hyun;Park, Soo Bin;Song, Hyun Seok
    • Clinics in Shoulder and Elbow
    • /
    • v.23 no.2
    • /
    • pp.71-79
    • /
    • 2020
  • Background: The glenoid version of the shoulder joint correlates with the stability of the glenohumeral joint and the clinical results of total shoulder arthroplasty. We sought to analyze and compare the glenoid version measured by traditional axial two-dimensional (2D) computed tomography (CT) and three-dimensional (3D) reconstructed images at different levels. Methods: A total of 30 cases, including 15 male and 15 female patients, who underwent 3D shoulder CT imaging was randomly selected and matched by sex consecutively at one hospital. The angular difference between the scapular body axis and 2D CT slice axis was measured. The glenoid version was assessed at three levels (midpoint, upper one-third, and center of the lower circle of the glenoid) using Friedman's method in the axial plane with 2D CT images and at the same level of three different transverse planes using a 3D reconstructed image. Results: The mean difference between the scapular body axis on the 3D reconstructed image and the 2D CT slice axis was 38.4°. At the level of the midpoint of the glenoid, the measurements were 1.7°±4.9° on the 2D CT images and -1.8°±4.1° in the 3D reconstructed image. At the level of the center of the lower circle, the measurements were 2.7°±5.2° on the 2D CT images and -0.5°±4.8° in the 3D reconstructed image. A statistically significant difference was found between the 2D CT and 3D reconstructed images at all three levels. Conclusions: The glenoid version is measured differently between axial 2D CT and 3D reconstructed images at three levels. Use of 3D reconstructed imaging can provide a more accurate glenoid version profile relative to 2D CT. The glenoid version is measured differently at different levels.

COMPARISON OF TWO- AND THREE-DIMENSIONAL SUPERSONIC TURBULENT FLOWS OVER A SINGLE CAVITY (단일 공동주위의 2차원과 3차원 초음속 유동 비교)

  • Woo C.H.;Kim J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.235-238
    • /
    • 2005
  • The unsteady supersonic flow over two- and three-Dimensional cavities has been analyzed by the integration of unsteady Reynolds-Averaged Navier-Stokes(RANS) with the k - w turbulence model. The unsteady flow is characterized by the periodicity due to the mutual relation between the shear layer and the internal flow in cavities. Numerical method is upwind TVD scheme based on the flux vector split with the Van Leer limiters, and time accuracy is used explicit 4th stage Runge-Kutta scheme. Cavity flows are Comparison of two- and three-dimensional. The cavity has a L/D ratio of 3 for two-dimensional case. and same L/D and W/D ratio is 1 for three-dimensional case. The Mach and Reynolds numbers are held constant at 1.5 and 450000 respectively. For the three-dimensional case, the flow field is observed to oscillate in the 'shear layer mode' with a feedback mechanism that follow Rossiter's formula. On the other hand, the self-sustained oscillating flow transitions to a 'wake mode' for the two-dimensional simulation, with more violent fluctuations inside the cavity.

  • PDF

Three-Dimensional Television using Optical Scanning Holography

  • Poon, Ting-Chung
    • Journal of Information Display
    • /
    • v.3 no.3
    • /
    • pp.12-16
    • /
    • 2002
  • We first review a real-time three-dimensional (3-D) holographic recording technique called optical scanning holography (OSH) and discuss holographic reconstruction using spatial light modulators (SLMs). We then present how the overall system can be used for 3-D holographic television (TV) display with a wide-angle view of a 3-D image, and address some of the issues encountered. Finally, we suggest some techniques to alleviate the issues encountered in such a 3-D holographic TV system.