• Title/Summary/Keyword: 3A zeolite

Search Result 624, Processing Time 0.031 seconds

Permanent disposal of Cs ions in the form of dense pollucite ceramics having low thermal expansion coefficient

  • Omerasevic, Mia;Lukic, Miodrag;Savic-Bisercic, Marjetka;Savic, Andrija;Matovic, Ljiljana;Bascarevic, Zvezdana;Bucevac, Dusan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.115-122
    • /
    • 2020
  • A promising method for removal of Cs ions from water and their incorporation into stable crystal structure ready for safe and permanent disposal was described. Cs-exchanged X zeolite was hot-pressed at temperature ranging from 800 to 950 ℃ to fabricate dense pollucite ceramics. It was found that the application of external pressure reduced the pollucite formation temperature. The effect of sintering temperature on density, phase composition and mechanical properties was investigated. The highest density of 92.5 %TD and the highest compressive strength of 79 MPa were measured in pollucite hot-pressed at 950 ℃ for 3 h. Heterogeneity of samples obtained at 950 ℃ was determined using scanning electron microscopy. The pollucite hot-pressed at 950 ℃ had low linear thermal expansion coefficient of ~4.67 × 10-6 K-1 in the temperature range from 100 to 1000 ℃.

Controlled Release of Oxyfluorfen from the Variously Complexed Formulations - II. Selection of Promising Formulations (수종(數種) 결합제형(結合劑型)으로부터 Oxyfluorfen의 방출제어(放出制御) 연구(硏究) - II. 유용(有用)한 방출제어형(放出制御型의) 선발(選拔))

  • Guh, J.O.;Im, W.H.;Lim, K.P.;Cho, C.S.;Chung, I.W.
    • Korean Journal of Weed Science
    • /
    • v.10 no.3
    • /
    • pp.207-213
    • /
    • 1990
  • Thirty formulations of oxyfluorfen(2-chloro-2,2,2-trifluoro-p-toyl 3-ethoxy-4-nitrophenyl ether were manufactured by adsorption and substitation. Of them 16 formulations n-ere selected because they showed rekatuvely high activity and long durability in the bioassay with (Brassica campestris V.L.) Then, the formulations selected and 4 commercial formulations were tested using Monochoria in pots. As the result, the formulations of polyer 11, elvan 7/40, coal-slag 7/40, zeolite(A), and bentonite(A) were selected because they showed almost complete inhibition of Monochoria even up the 73 days after treatment.

  • PDF

Adsorption and Catalytic Characteristics of Acid-Treated Clinoptilolite Zeolite (산처리한 Clinoptilolite Zeolite 의 흡착 및 촉매특성)

  • Chon Hakze;Seo Gon
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.469-478
    • /
    • 1976
  • Clinoptilolite zeolite samples were treated with hydrochloric acid, sulfuric acid and phosphoric acid of different strength and the adsorption characteristics and crystal structures of the original and acid-treated clinoptilolites were studied. By treating with hydrochloric acid, the adsorbed amount increased to 5-fold for nitrogen, to 3-fold for benzene, but for methanol no significant change was observed. As acid strength increased further, there were declines both in adsorption capacity and crystallinity. The results showed that the increase of adsorbed amount was caused by the rearrangement of the pore entrance and cation exchange. A method for determination of clinoptilolite content in natural mineral based on benzene adsorption on acid-treated sample is proposed. By this method, the original sample used in this study was found to contain approximately 40% of clinoptilolite. Using pulse technique in micro-catalytic reactor system, the catalytic activities of hydrochloric acid-treated clinoptilolites in cumene cracking and toluene disproportionation reactions were measured. For cumene cracking reaction, the maximum conversion was observed for the 0.5 N hydrochloric acid-treated sample. It is instructive to note that the maximum benzene adsorption was also observed for the sample treated with 0.5 N HCl. This suggest that the conversion rate was determined mainly by the rate of transport of reactants and the products through the pore structure. In the toluene disproportionation reaction, the same trend was observed. But the rate of deactivation was high for samples with strong acid sites. Since catalyst having higher activity was deactivated more easily, the conversion maximum was shifted to the sample treated with higher concentration of acid, -1N. The catalytic activity of $Ca^{2+} and La^{3+} ion exchanged samples for the toluene disproportion was much lower than that of acid-treated samples. Introduction of Ca^{2+} and La^{3+}$ into the pore structure apparently decreases the effective pore diameter of acid-treated clinoptilolite thus limiting the diffusion of reactants and products.

  • PDF

Single-crystal Structure of Partially Dehydrated Partially Mg2+-exchanged Zeolite Y (FAU), |Mg30.5Na14(H2O)2.5|[Si117Al75O384]-FAU

  • Kim, Hu-Sik;Ko, Seong-Oon;Lim, Woo-Taik
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3696-3701
    • /
    • 2011
  • The single-crystal structure of partially dehydrated partially $Mg^{2+}$-exchanged zeolite Y, ${\mid}Mg{30.5}Na_{14}(H_2O)_{2.5}{\mid}$ [$Si_{117}Al_{75}O_{384}$]-FAU per unit cell, ${\alpha}$ = 25.5060(1) ${\AA}$, dehydrated at 723 K and $1{\times}10^{-4}$ Pa, has been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd$\bar{3}$ m at 100(1) K. The structure was refined using all intensities to the final error indices (using only the 561 reflections with $F_{\circ}$ > $4{\sigma}(F_{\circ})$) $R_1$ = 0.0377 (Based on F) and $R_2$ = 0.1032 (Based on $F^2$). About 30.5 $Mg^{2+}$ ions per unit cell are found at four different crystallographic sites. The 14 $Mg^{2+}$ ions occupy at site I at the center of double 6-ring (Mg-O = 2.231(3) ${\AA}$, O-Mg-O = $89.15(11)^{\circ}$ and $90.85(11)^{\circ}$). Four $Mg^{2+}$ ions are found at site I' in the sodalite cavity; the $Mg^{2+}$ ions are recessed 1.22 ${\AA}$ into the sodalite cavity from their 3-oxygen plane (Mg-O = 2.20(3) ${\AA}$ and O-Mg-O = $92.3(14)^{\circ}$). Site II' positions (opposite single 6-rings in the sodalite cage) are occupied by 2.5 $Mg^{2+}$ ions, each coordinated to an $H_2O$ molecule (Mg-O = 2.187(20) ${\AA}$ and O-Mg-O = $114.2(16)^{\circ}$). The 10 $Mg^{2+}$ ions are nearly three-quarters filled at site II in the supercage, being recessed 0.12 ${\AA}$ into the supercage (Mg-O = 2.123(4) A and O-Mg-O = $119.70(19)^{\circ}$). About 14 $Na^+$ ions per unit cell are found at one crystallographic site; the $Na^+$ ions are located at site II in the supercage (Na-O = 2.234(7) ${\AA}$ and O-Mg-O = $110.5(4)^{\circ}$).

Research on the phenomenon of sick house syndrome and how to remove harmful gases (새집증후군 현상 및 유해가스 제거방안 연구)

  • Choe, Yoowha
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.449-456
    • /
    • 2020
  • When you move to a new home, or when you change the wallpaper or flooring of your home, office, etc., you can enjoy the joy of opening your new home with the sick house syndrome, such as the stinging smell and stinging eyes that may appear after the interior work. It is only a moment. Volatile organic compounds from building materials, adhesives, wallpaper, and paints used in new buildings or new furniture cause residents' health and discomfort in indoor life. These volatile organic compounds include benzene, toluene, acetone, and styrene, as well as the representative formaldehyde, and these substances are slowly released over a long period of time, causing acute or chronic diseases to residents. As a method for removing organic volatile substances, physical methods using adsorption, chemical methods for converting volatile substances to other substances, or a mixture of the two are mainly used. In this paper, a sustained release chlorine dioxide gel pack obtained by a method for controlling the reaction rate of a reactant and the release of a product is mixed with a zeolite adsorbent having an optimized hole diameter to adsorb and decompose and remove formaldehyde suspended in the air. I would suggest an effective method.

Ammonia Decomposition over Ni Catalysts Supported on Zeolites for Clean Hydrogen Production (청정수소 생산을 위한 암모니아 분해 반응에서 Ni/Zeolite 촉매의 반응활성에 관한 연구)

  • Jiyu Kim;Kyoung Deok Kim;Unho Jung;Yongha Park;Ki Bong Lee;Kee Young Koo
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.19-26
    • /
    • 2023
  • Hydrogen, a clean energy source free of COx emissions, is poised to replace fossil fuels, with its usage on the rise. Despite its high energy content per unit mass, hydrogen faces limitations in storage and transportation due to its low storage density and challenges in long-term storage. In contrast, ammonia offers a high storage capacity per unit volume and is relatively easy to liquefy, making it an attractive option for storing and transporting large volumes of hydrogen. While NH3 decomposition is an endothermic reaction, achieving excellent low-temperature catalytic activity is essential for process efficiency and cost-effectiveness. The study examined the effects of different zeolite types (5A, NaY, ZSM5) on NH3 decomposition activity, considering differences in pore structure, cations, and Si/Al-ratio. Notably, the 5A zeolite facilitated the high dispersion of Ni across the surface, inside pores, and within the structure. Its low Si/Al ratio contributed to abundant acidity, enhancing ammonia adsorption. Additionally, the presence of Na and Ca cations in the support created medium basic sites that improved N2 desorption rates. As a result, among the prepared catalysts, the 15 wt%Ni/5A catalyst exhibited the highest NH3 conversion and a high H2 formation rate of 23.5 mmol/gcat·min (30,000 mL/gcat·h, 600 ℃). This performance was attributed to the strong metal-support interaction and the enhancement of N2 desorption rates through the presence of medium basic sites.

Ammonium Adsorption Property of Acrylic Acid and Styren Grafting Polypropylene Non-Woven Fabric Synthesized by Photo-induced Polymerization (광조사 중합법에 의해 합성된 PP-g-AA와 PP-g-St 부직포의 암모니아성 질소 흡착특성 비교)

  • Park, Hyun-Ju;Na, Choon-Ki
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1255-1263
    • /
    • 2008
  • The efficiency of PP-g-AA and PP-g-St nonwoven fabric synthesized by photoinduced polymerization as an adsorbent for removal $NH_3-N$ from waste water was evaluated. The results evidently indicate that the adsorption capacities of $NH_3-N$ onto PP-g-AA nonwoven fabric were extremely superior to those onto sulfonated PP-g-St nonwoven fabric, PK and zeolite. PP-g-AA nonwoven fabric showed the maximum adsorption capacity of $NH_3-N$ at the degree of grafting of 80 wt.%. The adsorption behaviour of $NH_3-N$ onto PP-g-AA and sulfonated PP-g-St nonwoven fabric was controlled by an ion exchange reaction, and tended to be similar to both trends of Langmiur and Freundlish isotherm. Futhermore, PP-g-AA non-woven fabric could be regenerated more than 5 times by a simple washing with 0.1N HCl with no decrease of adsorption capacity and no degradation of physical properties. Also sulfonated PP-g-St nonwoven fabric could be regenerated by washing with 0.1N ${H_2}{O_4}$. However, their regeneration efficiency was significantly low because grafting layer acted as functional radical for adsorption was continuously desquamated in the adsorption or regeneration processes, which resulted in decrease of adsorption capacity and weight of adsorbent. All results obtained from this study indicate that the $NH_3-N$ removal capacity of PP-g-AA non-woven fabric was extremely superior to those of PP-g-St non-woven fabric, PK and zeolite.

Exploration of Optimum Retention of Antibacterial Agents in Functional Packaging Paper (항균 포장원지내 항균소재의 최적 정착법 탐색)

  • Kim, Chul-Hwan;Kim, Jae-Ok;Jung, Jun-Ho;Cho, Sung-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.2
    • /
    • pp.298-305
    • /
    • 2005
  • Antimicrobial packaging paper was prepared with a powder-type botanical antimicrobial agent from grapefruit seed extract (BAAG) and zeolite according to TAPPI standard method. The functional fillers containing BAAG fixed to CaCO$_3$ and zeolite were well retained in the fiber network by a retention aid such as cationic polyacrylamide, which was ascertained by the ash contents of paper and the SEM microphotographs. With addition of the functional fillers to paper, tensile strength and burst strength of the paper decreased by interference of the functional fillers with interfiber bonding but bending stiffness and tear strength increased by improved elastic modulus of paper and delayed transfer of tearing energy. Finally, it was confirmed that the antimicrobial packaging paper might be able to be used to make packaging bags and corrugated containers due to the minor deterioration of strength properties.

Culture Method of Spore for Entomopathogenic Fungus Using Natural Zeolite Ceramic Ball (천연제오라이트 세라믹볼을 이용한 곤충병원성 곰팡이 포자 생산 방법)

  • Lee, Jung-Bok;Kim, Beaum-Soo;Joo, Woo-Hong;Kwon, Gi-Seok
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.1
    • /
    • pp.72-78
    • /
    • 2016
  • BACKGROUND: Entomopathogenic fungi have been studied to develop for biological control agents as an alternative to chemical control agents in insect pest management. This investigated to determine the optimal culture conditions in ceramic balls for maximal sporulation of entomopathogenic fungi Beauveria bassiana M130 by use rice bran extract.METHODS AND RESULTS: METHODS AND RESULTS: A culture of entomopathogenic fungi for 12day on rice bran extract(1:8, w/v) incubated in ceramic matrix at 28℃. Natural zeolite ceramic ball was high production of 4.2×108 conidial/mL. The culture condition optimized initial pH, temperature, rice bran extract concentration, adhesives substance and concentration of NaCl, respectively. The high production of spore optimal conditions were temperature 28℃, initial pH 3, rice bran extract 3 mL, starch 33 g, 5 % NaCl and sopre suspension 7 mL, respectively.CONCLUSION: This study was carried out for the mass production of entomopathogenic fungi conidia recover rate 65% in matrix of natural zeolite ceramic ball, and to develop ingredient-used formulation of Beauveria bassiana M130 conidia for biological control agents.

Coating of NaX Zeolite on the Porous Ceramics (다공성 세라믹스에 NaX 제올라이트의 코팅)

  • 하종필;서동남;김익진
    • Proceedings of the KAIS Fall Conference
    • /
    • 2000.10a
    • /
    • pp.27-29
    • /
    • 2000
  • 다공성 세라믹 기질에 제올라이트의 코팅은 기체 분리용 membrane으로 매우 효과적이다. 수열합성법으로 NaX 제올라이트를 다공성 cordierite와 cordierite, mullite 복합기질의 표면에 코팅하는 과정에서 H₂O/Al₂O₃ 몰비를 500, 1000으로 증가시키면서 코팅 특성의 변화와 코팅 속도를 측정한 결과 몰비가 감소할수록 코팅층에 NaA 제올라이트의 존재비가 증가하였으며, 코팅층의 형성 속도는 증가하였다. H₂O/Al₂O₃ 1000 몰에서는 반응 9일에 매우 치밀하고 균일한 NaX 제올라이트 코팅층을 얻을 수 있었으며, H₂O/Al₂O₃ 1000 몰에서는 반응3일에서 1000 몰의 9일과 같은 결과를 얻을 수 있었다.